

Monolith X Protocol MOX-P-111

DNA Aptamer – AMP - Thermodynamics

The DNA aptamer for adenosine is a highly conserved sequence that is a widely used model aptamer for biosensor development. It also binds ADP and ATP, and with slightly weaker affinity AMP. The temperature dependency of the DNA aptamer – AMP affinity can be used to determine enthalpic (Δ H) and entropic (Δ S) contributions of the molecular interaction via a Van't Hoff analysis.

nucleic acid – small molecule | DNA | aptamer | thermodynamics

A1. Target/Fluorescent Molecule

DNA aptamer for adenosine

A2. Molecule Class/Organism

DNA aptamer

A3. Sequence/Formula

5' Cy5 ACC TGG GGG AGT ATT GCG GAG GAA GGT 3'

A4. Purification Strategy/Source

metabion international AG

A5. Stock Concentration/Stock Buffer

0.90 mg/ml | 100 μM ddH₂O

A6. Molecular Weight/Extinction Coefficient

9019 Da 273,300 M⁻¹cm⁻¹ (ε₂₆₀)

A7. Dilution Buffer

20 mM Tris-HCl, pH 7.8, 300 mM NaCl, 5 mM MgCl₂, 0.05% TWEEN® 20¹

A8. Labeling Strategy

Cy5

¹ Reaction buffer C from Control Kit RED (MO-C030, NanoTemper Technologies GmbH)

A9. Labeling Procedure

- 1. Mix 2 μ L of 100 μ M aptamer with 5 mL of dilution buffer to obtain a 40 nM aptamer solution.
- 2. Prepare 200 μL aliquots and store at -20°C.

A10. Labeling Efficiency

HPLC-purified, 100% labeled oligonucleotide

B1. Ligand/Non-Fluorescent Binding Partner

Adenosine monophosphate (AMP)

B2. Molecule Class/Organism

Nucleotide monophosphate

B3. Sequence/Formula

 $C_{10}H_{14}N_5O_7P$

B4. Purification Strategy/Source

Sigma-Aldrich GmbH

B5. Stock Concentration/Stock Buffer

17.4 mg/mL | 50 mM 20 mM Tris-HCl, pH 7.8, 300 mM NaCl, 5 mM MgCl₂, 0.05% TWEEN[®] 20

B6. Molecular Weight/Extinction Coefficient

347.22 Da

B7. Serial Dilution Preparation

- 1. Prepare a PCR-rack with 16 PCR tubes. Mix 4 μ L of the 50 mM AMP solution with 16 μ L of dilution buffer in tube **1**. Then, transfer 10 μ L of dilution buffer into tubes **2** to **16**.
- 2. Prepare a 1:1 serial dilution by transferring 10 μL from tube to tube. Mix carefully by pipetting up and down. Remember to discard 10 μL from tube **16** to get an equal volume of 10 μL for all samples.
- 3. Add 10 μL of 40 nM AMP aptamer to each tube from 16 to 1 and mix by pipetting.
- 4. Load capillaries immediately.

D1. Monolith System/Capillaries

Monolith X (NanoTemper Technologies GmbH) Monolith Premium Capillaries (MO-K025, NanoTemper Technologies GmbH)

D2. Monolith Software

MO.Control v2.4.2 (NanoTemper Technologies GmbH) nanotempertech.com/monolith-mo-control-software

D3. Monolith Experiment (Assay Buffer/Concentrations/Temperature/Excitation Power)

20 mM Tris, pH 7.8, 300 mM NaCl, 5 mM MgCl₂, 0.05% TWEEN[®] 20 20 nM aptamer | 5 mM – 153 nM AMP | 20°C – 40°C | 40% excitation power

D4. Monolith Results (Dose Response)

Overview of determined K_d values at different temperatures:

T (°C)	20	25	30	35
K _d (μM)	23.8	37.3	59.7	89.1

Van't Hoff analysis²:

 $\label{eq:2.1} \begin{array}{l} \Delta H = -70.9 \pm 1.9 \ \text{kJ/mol} \\ \Delta S = -153.2 \pm 6.2 \ \text{J/mol/K} \\ \Delta G \ (\text{at } 25^{\circ}\text{C}) = -25.2 \pm 2.6 \ \text{kJ/mol} \end{array}$

²Calculations can be performed with Monolith X's Thermodyanmics Measurement mode in MO.Control 2.7.0 and later versions. Plots were created outside of MO.Control 2 with temperature set at 25°C (298.15K) for Δ G calculation.

D5. Reference Results/Supporting Results

$$\label{eq:Kd} \begin{split} \text{K}_{\text{d}} = 58 \pm 2 \; \mu \text{M} & \text{Frontal chromatography analysis} \\ \text{Deng et al., Anal Chem 73 (2001) 5415-5421} \end{split}$$

E. Contributors

Andreas Langer³

³ NanoTemper Technologies GmbH, München, Germany | nanotempertech.com