

Monolith Protocol MO-P-072

Anti-Digoxigenin, Fab fragments – Digoxigenin-DNA

Anti-Digoxigenin, Fab fragments are Fab fragments from polyclonal anti-digoxigenin antibodies, which are used for the detection of digoxigenin-labeled compounds in ELISA or Western blot. Digoxigenin (DIG) is a steroid found exclusively in the flowers and leaves of the plants *Digitalis purpurea*, *Digitalis orientalis* and *Digitalis lanata* (foxgloves), where it is attached to sugars. It is widely used as nucleic acid label.

protein – small molecule interaction | Fab fragment

A1. Target/Fluorescent Molecule

Anti-Digoxigenin, Fab fragments

A2. Molecule Class/Organism

Fab fragment (from IgG1) *Sheep*

A3. Sequence/Formula

N/A (polyclonal)

A4. Purification Strategy/Source

Roche, Sigma-Aldrich GmbH 1214667001

A5. Stock Concentration/Stock Buffer

1 mg lyophilized

A6. Molecular Weight/Extinction Coefficient

~50 kDa

~70,000 M^{-1} cm⁻¹ (ϵ_{280} , determined with a NanoDrop[®] from a constituted 1 mg/mL stock solution)

A7. Dilution Buffer

Phosphate-buffered saline (PBS), pH 7.4, 0.01% Pluronic® F-127

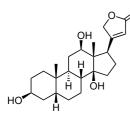
A8. Labeling Strategy

Monolith Protein Labeling Kit RED – NHS 2nd Generation (MO-L011, NanoTemper Technologies GmbH) 1* Labeling Buffer NHS | 1* Dye RED-NHS 2nd Generation (10 µg) | 1* B-Column

A9. Labeling Procedure

- 1. Reconstitute 1 mg of Fab fragments in 1 mL of PBS to obtain a ~20 μ M stock solution.
- 2. Transfer 100 μL of the 20 μM Fab stock solution into a fresh tube.
- 3. Add 25 μL of DMSO to Dye RED-NHS 2nd Generation (10 μg) to obtain a ~600 μM solution. Mix the dye thoroughly by vortexing and make sure that all dye is dissolved.
- 4. Mix 10 μ L of the 600 μ M dye solution with 90 μ L of Labeling Buffer NHS to obtain 100 μ L of a 60 μ M dye solution (3x protein concentration).
- 5. Mix Fab and dye in a 1:1 volume ratio (200 µL final volume, 5% final DMSO concentration).
- 6. Incubate for 20 minutes at room temperature in the dark.
- 7. In the meantime, remove the top cap of the B-Column and pour off the storage solution. Remove the bottom cap and place with adapter in a 15 mL tube.
- 8. Fill the column with dilution buffer and allow it to enter the packed resin bed completely by gravity flow. Discard the flow through collected. Repeat this step 3 more times.
- 9. Add 200 μL of the labeling reaction from step 5 to the center of the column and let sample enter the resin bed completely.
- 10. Add 450 μ L of dilution buffer after the sample has entered and discard the flow through.
- 11. Place column in a new collection tube, add 500 µL of dilution buffer and collect the eluate.
- 12. Keep the labeled Fab (~4 $\mu\text{M})$ on ice in the dark.

A10. Labeling Efficiency


Measurement of protein concentration and degree of labeling (DOL) using a NanoDrop[™]: nanotempertech.com/dol-colculator

Absorbance A ₂₀₅	5.751	Protein concentration	~3.63 µM
Absorbance A ₆₅₀	0.652	Degree-of-labeling (DOL)	~0.92

B1. Ligand/Non-Fluorescent Binding Partner

Digoxigenin-modified single-stranded DNA (DIG-DNA)

B2. Molecule Class/Organism

Steroid

B3. Sequence/Formula

5' Digoxigenin TTT TTT 3'

B4. Purification Strategy/Source

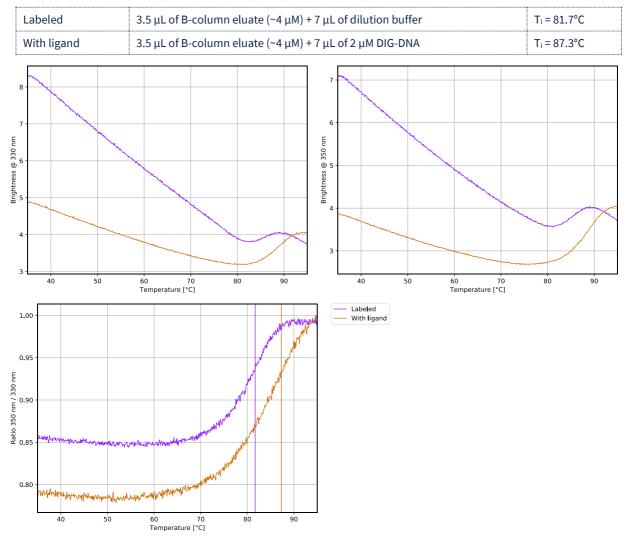
Metabion GmbH

B5. Stock Concentration/Stock Buffer

100 μM ddH₂O

B6. Molecular Weight/Extinction Coefficient

2,487 Da


B7. Serial Dilution Preparation

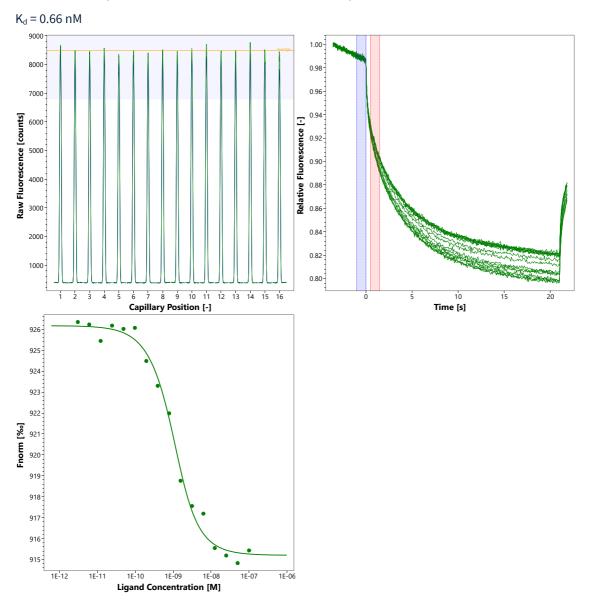
- 1. Mix 2 μ L of the 100 μ M DIG-DNA stock with 98 μ L of dilution buffer to obtain 100 μ L of a 2 μ M solution.
- 2. Prepare a PCR-rack with 16 PCR tubes. Mix 4 μ L of the 2 μ M DIG-DNA solution with 36 μ L of dilution buffer in tube **1**. Then, transfer 20 μ L of dilution buffer into tubes **2** to **16**.
- 3. Prepare a 1:1 serial dilution by transferring 20 μL from tube to tube. Mix carefully by pipetting up and down. Remember to discard 20 μL from tube **16** to get an equal volume of 20 μL for all samples.
- 4. Mix 2 μ L of labeled Fab (~4 μ M) with 18 μ L of dilution buffer to obtain 20 μ L of a ~400 nM Fab solution.
- 5. Mix 2 μ L of labeled Fab (~400 μ M) with 398 μ L of dilution buffer to obtain 400 μ L of a ~2 nM Fab solution.
- 6. Add 20 μL of this solution to each tube from 16 to 1 and mix by pipetting.
- 7. Incubate tubes for 20 minutes at room temperature in the dark before loading capillaries.

C. Applied Quality Checks

Validation of structural integrity and functionality of labeled Fab fragments using Tycho NT.6: nanotempertech.com/tycho

D1. MST System/Capillaries

Monolith NT.115^{PICO} Red (NanoTemper Technologies GmbH) Capillaries Monolith NT.115 (MO-K022, NanoTemper Technologies GmbH)


D2. MST Software

MO.Control v1.6 (NanoTemper Technologies GmbH) https://nanotempertech.com/monolith-mo-control-software/

D3. MST Experiment (Concentrations/Temperature/MST Power/Excitation Power)

Phosphate-buffered saline (PBS), pH 7.4, 0.01% Pluronic[®] F-127 1 nM Fab | 100 nM – 3 pM DIG-DNA | 25°C | medium MST power | 40% excitation power

D4. MST Results (Capillary Scan/Time Traces/Dose Response)

D5. Reference Results/Supporting Results

 K_d = 0.91 ± 0.22 nM

Surface-Plasmon Resonance (SPR) Daugherty et al., Protein Engineering 11 (9), 825-832, (1998)

E. Contributors

Andreas Langer¹

¹ NanoTemper Technologies GmbH, München, Germany | nanotempertech.com