

Monolith Protocol MO-P-064

# CCL19 – CCR7 Chemokine Receptor Peptide

Chemokines are small molecular weight proteins which bind to and activate G-protein-coupled receptors (GPCRs) and play a crucial role in cancer cell metastasis. CCR7 is a chemokine receptor which when expressed on the surface of a cell recognizes chemokine CCL19. Interaction of chemokine CCL19 and chemokine receptor CCR7 peptides is characterized as a model system for development of peptide-based PPI inhibitors.

protein – peptide interaction | chemokine | His-tag

#### A1. Target/Fluorescent Molecule

CCL19 uniprot.org/uniprot/Q99731

#### A2. Molecule Class/Organism

Chemokine Homo sapiens (Human)

#### A3. Sequence/Formula

MALLLALSLL VLWTSPAPTL SGTNDAEDCC LSVTQKPIPG YIVRNFHYLL IKDGCRVPAV VFTTLRGRQL CAPPDQPWVE RIIQRLQRTS AKMKRRSS

#### A4. Purification Strategy/Source

Recombinant, N-terminal His-tag, produced in E. coli Creative Biomart, Shirley, USA CCL19-721H

#### A5. Stock Concentration/Stock Buffer

20 μg lyophilized powder Phosphate-buffered saline (PBS), pH 7.4, 0.05% TWEEN<sup>®</sup> 20

#### A6. Molecular Weight/Extinction Coefficient

10.3 kDa 14,230 M<sup>-1</sup>cm<sup>-1</sup> (ε<sub>280</sub>)

#### A7. Dilution Buffer

Phosphate-buffered saline (PBS), pH 7.4, 0.05% TWEEN® 20



#### **A8.** Labeling Strategy

Monolith His-Tag Labeling Kit RED-tris-NTA (MO-L008, NanoTemper Technologies GmbH) 1\* 125 pmol RED-tris-NTA Dye

#### **A9. Labeling Procedure**

- 1. Suspend 20  $\mu g$  CCL19 in 100  $\mu L$  of PBS to obtain a 19.5  $\mu M$  solution.
- 2. Suspend 125 pmol RED-tris-NTA Dye in 25  $\mu$ L of dilution buffer to obtain a 5  $\mu$ M dye solution.
- 3. Prepare a 100 nM dye solution by mixing 2  $\mu$ L of dye (5  $\mu$ M) and 98  $\mu$ L of dilution buffer.
- 4. Prepare a 20 nM dye solution by mixing 20 μL of dye (100 nM) and 80 μL of dilution buffer.
- 5. Prepare a 200 nM CCL19 solution by mixing 1  $\mu$ L of 19.5  $\mu$ M CCL19 and 99  $\mu$ L of dilution buffer.
- 6. Mix 100  $\mu L$  of CCL19 (200 nM) with 100  $\mu L$  of dye (20 nM).
- 7. Incubate for 30 minutes at room temperature in the dark.

#### A10. Labeling Efficiency

N/A

#### B1. Ligand/Non-Fluorescent Binding Partner

CCR7 peptide<sup>1</sup>

#### B2. Molecule Class/Organism

Truncated chemokine receptor peptide *Homo sapiens (Human)* 

#### **B3. Sequence/Formula**

DDYIGDNTTV-NH<sub>2</sub>

### **B4.** Purification Strategy/Source

In-house synthesis<sup>2</sup>

#### **B5. Stock Concentration/Stock Buffer**

500  $\mu M$  Phosphate-buffered saline (PBS), pH 7.4, 0.05% TWEEN® 20

<sup>&</sup>lt;sup>1</sup> Exemplified here at the truncated version 10.2.

<sup>&</sup>lt;sup>2</sup> See Fuchs et al., Angew. Chem. Int. Ed. 58 (21), 7138–7142 (2019) for further information.



#### **B6. Molecular Weight/Extinction Coefficient**

1111 Da 1,490 M<sup>-1</sup>cm<sup>-1</sup> (ε<sub>280</sub>)

#### **B7. Serial Dilution Preparation**

- 1. Prepare a PCR-rack with 16 PCR tubes. Transfer 20  $\mu$ L of the 500  $\mu$ M CCR7 peptide solution into tube **1** Then, transfer 10  $\mu$ L of dilution buffer into tubes **2** to **16**.
- 2. Prepare a 1:1 serial dilution by transferring 10 μL from tube to tube. Mix carefully by pipetting up and down. Remember to discard 10 μL from tube **16** to get an equal volume of 10 μL for all samples.
- 3. Add 10  $\mu L$  of labeled CCL19 (100 nM) to each tube from 16 to 1 and mix by pipetting.
- 4. Incubate for 15 minutes at room temperature in the dark before loading capillaries.

#### D1. MST System/Capillaries

Monolith NT.115<sup>Pico</sup> Red (NanoTemper Technologies GmbH) Premium Capillaries Monolith NT.115 (MO-K025, NanoTemper Technologies GmbH)

#### **D2. MST Software**

MO.Control v1.6 (NanoTemper Technologies GmbH) nanotempertech.com/monolith-mo-control-software/

#### D3. MST Experiment (Assay Buffer/Concentrations/Temperature/MST Power/Excitation Power)

Phosphate-buffered saline (PBS), pH 7.4, 0.05% TWEEN<sup>®</sup> 20 50 nM CCL19 | 250 μM – 7.63 nM CCR7 | 25°C | medium MST power | 20% excitation power



# D4. MST Results (Capillary Scan/Time Traces/Dose Response)



## D5. Reference Results/Supporting Results

N/A

## E. Contributors

Cyrill Brunner<sup>4</sup>, Katarzyna Walkiewicz<sup>5</sup>

<sup>&</sup>lt;sup>3</sup> In the publication, final concentrations of 10 nM CCL19 and 5 nM RED-tris-NTA Dye have been used.

<sup>&</sup>lt;sup>4</sup> ETH Zurich, Zurich, Switzerland

<sup>&</sup>lt;sup>5</sup> NanoTemper Technologies GmbH, München, Germany | nanotempertech.com