

Monolith Protocol MO-P-057

DNA Aptamer – Ochratoxin (in milk)

DNA aptamers are molecules that can be produced with high quality and low batch-to-batch variations via chemical synthesis. In addition, they bind their targets with high affinity. In the field of biosensor development, aptamers are a valuable alternative to antibodies in detecting small molecules. In this protocol the binding of an aptamer to ochratoxin is analyzed. Ochratoxin A is a mycotoxin found in food. It is nephrotoxic and carcinogenic in the kidney and induces differentiation in cloned renal cell lines. The binding is assayed in buffer, as well as in a buffer spiked with milk.

aptamer – small molecule interaction | complex bioliquid

A1. Target/Fluorescent Molecule

DNA aptamer

A2. Molecule Class/Organism

DNA aptamer

A3. Sequence/Formula

5' Cy5 TGG TGG CTG TAG GTC AGC ATC TGA TCG GGT GTG GGT GGC GTA AAG GGA GCA TCG GAC AAC G 3'

A4. Purification Strategy/Source

IBA Lifesciences (Göttingen, Germany)

A5. Stock Concentration/Stock Buffer

100 μM ddH₂O

A6. Molecular Weight/Extinction Coefficient

19.6 kDa 597,700 M⁻¹cm⁻¹ (ε₂₆₀)

A7. Dilution Buffer

10 mM Tris-HCl, pH 8.5, 120 mM NaCl, 5 mM KCl, 20 mM CaCl_2, with or without 50% milk

A8. Labeling Strategy

5' Cy5 labeled

A9. Labeling Procedure

N/A

A10. Labeling Efficiency

HPLC-purified, 100% labeled DNA

B1. Ligand/Non-Fluorescent Binding Partner

Ochratoxin A (OTA)

_^{OH}♀ 0 ОН 'N' H O і, ′′′′′СН₃

B2. Molecule Class/Organism

Mycotoxin Petromyces albertensis

B3. Sequence/Formula

 $\mathsf{C}_{20}\mathsf{H}_{18}\mathsf{CINO}_6$

B4. Purification Strategy/Source

Sigma-Aldrich

B5. Stock Concentration/Stock Buffer

1 mg/mL | 2.48 mM DMSO

B6. Molecular Weight/Extinction Coefficient

403.8 Da

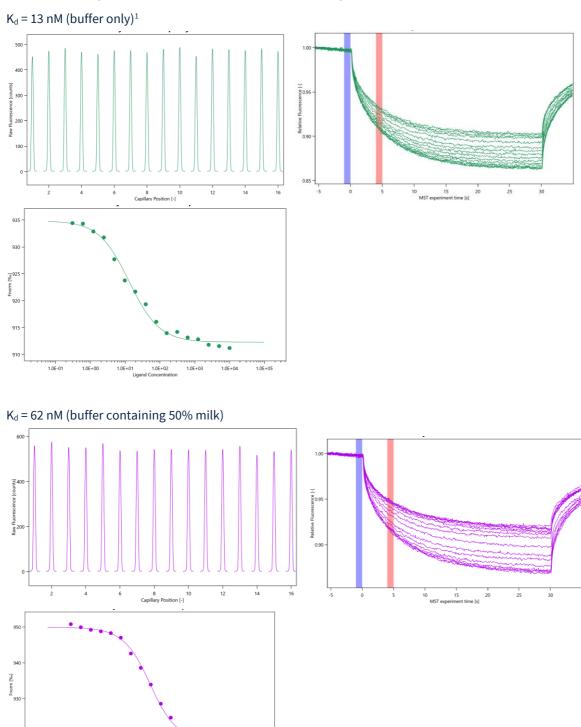
B7. Serial Dilution Preparation

- 1. Mix 2 μ L of the OTA stock with 246 μ L of dilution buffer to obtain 248 μ L of a 20 μ M solution.
- 2. Prepare a PCR-rack with 16 PCR tubes. Transfer 20 μ L of the 20 μ M OTA solution into tube **1**. Then, transfer 10 μ L of dilution buffer into tubes **2** to **16**.
- 3. Prepare a 1:1 serial dilution by transferring 10 μL from tube to tube. Mix carefully by pipetting up and down. Remember to discard 10 μL from tube **16** to get an equal volume of 10 μL for all samples.
- 4. Mix 2 μ L of 100 μ M DNA aptamer with 38 μ L of dilution buffer to obtain 40 μ L of 5 μ M DNA aptamer.
- 5. Mix 2 μ L of 5 μ M DNA aptamer with 198 μ L of dilution buffer to obtain 200 μ L of 50 nM DNA aptamer.
- 6. Add 10 μL of 50 nM DNA aptamer to each tube from 16 to 1 and mix by pipetting.
- 7. Incubate for 5 minutes at room temperature in the dark before loading capillaries.

D1. MST System/Capillaries

Monolith NT.115 Red (NanoTemper Technologies GmbH) Capillaries Monolith NT.115 (MO-K022, NanoTemper Technologies GmbH)

D2. MST Software


MO.Control v1.6 (NanoTemper Technologies GmbH) nanotempertech.com/manalith-ma-control-software

D3. MST Experiment (Assay Buffer/Concentrations/Temperature/MST Power/Excitation Power)

10 mM Tris-HCl, pH 8.5, 120 mM NaCl, 5 mM KCl, 20 mM CaCl₂, with or without 50% milk 25 nM DNA aptamer | 10 μ M – 0.3 nM OTA | 22°C | low MST power | 20% excitation power

D4. MST Results (Capillary Scan/Time Traces/Dose Response)

1.0E+02

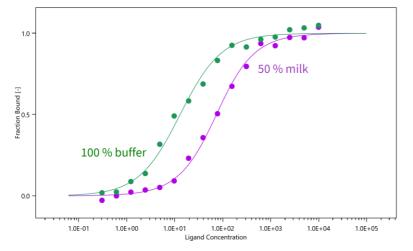
1.0E+04

1.0E+03

1.0E+05

920

1.0E-0


1.0E+00

1.0E+

¹ Eilers et al., "Aptamer affinity and matrix effects", Application Note, IBA Lifesciences

Comparison of binding in buffer and buffer containing milk

D5. Reference Results/Supporting Results

N/A

E. Contributors

Alina Eilers², Torsten Schüling², Johanna Walter², Teresia Hallström³

² Institute for Technical Chemistry, University of Hannover, Hannover, Germany

³ NanoTemper Technologies GmbH, München, Germany | nanotempertech.com