

Monolith Protocol MO-P-055

STING - 2',3'-cGAMP

Stimulator of interferon genes (STING) is a protein that plays an important role in innate immunity. STING induces type I interferon production when cells are infected with intracellular pathogens, such as viruses, mycobacteria and intracellular parasites. Innate immune response is triggered in response to non-CpG double-stranded DNA from viruses and bacteria delivered to the cytoplasm. STING acts by binding cyclic dinucleotides. It recognizes and binds cyclic di-GMP (c-di-GMP), a second messenger produced by bacteria, and cyclic GMP-AMP (cGAMP), a messenger produced by CGAS in response to DNA virus in the cytosol.

protein – small molecule interaction | innate immune response | Hise-tag

A1. Target/Fluorescent Molecule

Stimulator of interferon genes (STING) uniprot.org/uniprot/Q86WV6

A2. Molecule Class/Organism

Transmembrane protein Homo sapiens (Human)

A3. Sequence/Formula

N/A

A4. Purification Strategy/Source

His₆-tagged Crelux GmbH

A5. Stock Concentration/Stock Buffer

 $5.8~mg/mL \mid 17.7~\mu\text{M}$ 20~mM HEPES/NaOH, pH $8.0,\,150~mM$ NaCl, 0.5~mM TCEP

A6. Molecular Weight/Extinction Coefficient

32.8 kDa 33,350 M⁻¹cm⁻¹ (ε₂₈₀)

A7. Dilution Buffer

50 mM HEPES, pH 7.4, 150 mM NaCl, 3 mM DTT, 0.005% TWEEN® 20

A8. Labeling Strategy

Monolith His-Tag Labeling Kit RED-tris-NTA 2nd Generation (MO-L018, NanoTemper Technologies GmbH) 1* 125 pmol RED-tris-NTA Dye 2nd Generation

A9. Labeling Procedure

- 1. Suspend 125 pmol RED-tris-NTA Dye 2nd Generation in 25 μL PBS-T to obtain a 5 μM dye solution.
- 2. Mix 590 μ L of dilution buffer with 3 μ L dye (5 μ M) and 6.8 μ L STING (17.7 μ M) to obtain 600 μ L of a 200 nM STING, 25 nM dye solution.
- 3. Incubate for 30 minutes at room temperature in the dark.
- 4. Centrifuge for 10 min at 4°C and 15,000 × g.

A10. Labeling Efficiency

N/A

B1. Ligand/Non-Fluorescent Binding Partner

Cyclic guanosine monophosphate-adenosine monophosphate (2',3'-cGAMP)

B2. Molecule Class/Organism

Cyclic dinucleotide

B3. Sequence/Formula

 $C_{20}H_{24}N_{10}O_{13}P_2$

B4. Purification Strategy/Source

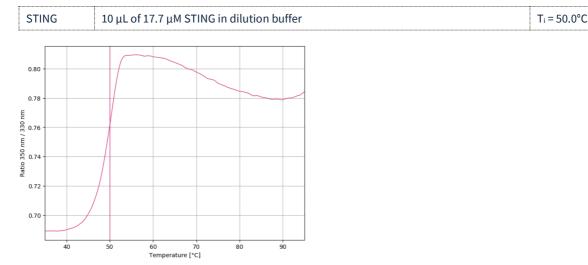
Sigma-Aldrich GmbH SML1229

B5. Stock Concentration/Stock Buffer

100 μM ddH₂O

B6. Molecular Weight/Extinction Coefficient

674.41 Da


B7. Serial Dilution Preparation

- 1. Mix 16 μ L of DMSO with 184 μ L of dilution buffer to obtain 200 μ L of a 8% DMSO solution.
- 2. Prepare a PCR-rack with 16 PCR tubes. Mix 4 μ L of the 100 μ M 2',3'-cGAMP solution with 14.4 μ L of dilution buffer and 1.6 μ L of DMSO in tube **1**. Then, transfer 10 μ L of the 8% DMSO solution into tubes **2** to **16**.
- 3. Prepare a 1:1 serial dilution by transferring 10 μ L from tube to tube. Mix carefully by pipetting up and down. Remember to discard 10 μ L from tube **16** to get an equal volume of 10 μ L for all samples.
- 4. Add 10 μ L of labeled STING (200 nM) to each tube from **16** to **1** and mix by pipetting.
- 5. Incubate for 30 minutes at room temperature in the dark before loading capillaries.

C. Applied Quality Checks

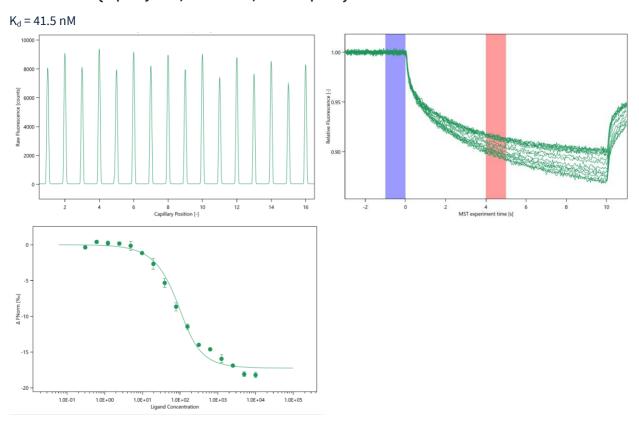
Validation of structural integrity of STING using Tycho NT.6:

nanotempertech.com/tycho

D1. MST System/Capillaries

Monolith NT.Automated, picoRED detector (NanoTemper Technologies GmbH)
Premium Capillary Chips Monolith NT.Automated (MO-AK005, NanoTemper Technologies GmbH)

D2. MST Software


MO.ScreeningControl v1.10 (NanoTemper Technologies GmbH) nanotempertech.com/monolith

D3. MST Experiment (Assay Buffer/Concentrations/Temperature/MST Power/Excitation Power)

50 mM HEPES, pH 7.4, 150 mM NaCl, 3 mM DTT, 0.005% TWEEN® 20, 4% DMSO 100 nM STING | 10 μ M – 0.31 nM 2',3'-cGAMP | 25°C | medium MST power | 5% excitation power

D4. MST Results (Capillary Scan/Time Traces/Dose Response)

D5. Reference Results/Supporting Results

 $K_d = 3.79 \text{ nM}$ Isothermal Titration Calorimetry (ITC) Zhang et al., Molecular Cell 51 (2013) 1–10

E. Contributors

Moran Jerabel-Willensen¹, Nina Schlinck²

¹ Crelux GmbH, Planegg-Martinsried, Germany

² NanoTemper Technologies GmbH, München, Germany | nonotempertech.com