

Monolith Protocol MO-P-053

Lysozyme – NAG3 (label-free)

Lysozyme is an enzyme that prevents bacterial infections by attacking peptidoglycan, a component of certain bacterial cell walls. Peptidoglycan is composed of the repeating amino sugars N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM), which are crosslinked by peptide bridges. Lysozyme hydrolyzes the bond between NAG and NAM, increasing the bacteria's permeability and causing the bacteria to burst. It is widely distributed in plants and animals. The majority of the lysozyme used in research is purified from hen egg whites. Tri-N-acetyl-D-glucosamine (NAG₃) is an inhibitor of lysozyme.

protein – small molecule interaction | carbohydrate | label-free

A1. Target/Fluorescent Molecule

Lysozyme uniprot.org/uniprot/B8YK79

A2. Molecule Class/Organism

Glycoside hydrolase Gallus gallus (Chicken)

A3. Sequence/Formula

KVFGRCELAA AMKRHGLDNY RGYSLGNWVC AAKFESNFNT QATNRNTDGS TDYGILQINS RWWCNDGRTP GSRNLCNIPC SALLSSDITA SVNCAKKIVS DGNGMNAWVA WRNRCKGTDV QAWIRGCRL

A4. Purification Strategy/Source

Sigma-Aldrich GmbH L6876

A5. Stock Concentration/Stock Buffer

32 µg lyophilized powder

A6. Molecular Weight/Extinction Coefficient

14.3 kDa 37,970 M⁻¹cm⁻¹ (ε₂₈₀)

A7. Dilution Buffer

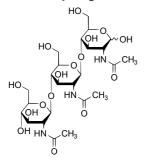
Phosphate-buffered saline (PBS), pH 7.4, 0.01% Pluronic® F-127

A8. Labeling Strategy

Trp and Tyr fluorescence

A9. Labeling Procedure

- 1. Resuspend lysozyme in 100 μL of dilution buffer to obtain a 20 μM solution.
- 2. Transfer 85 μ L of this solution into a fresh tube and mix with 85 μ L of dilution buffer to obtain 170 μ L of a 10 μ M lysozyme solution.


A10. Labeling Efficiency

N/A

B1. Ligand/Non-Fluorescent Binding Partner

Tri-N-acetyl-D-glucosamine (NAG₃)

B2. Molecule Class/Organism

Carbohydrate

B3. Sequence/Formula

 $C_{24}H_{41}N_3O_{16}$

B4. Purification Strategy/Source

Sigma-Aldrich GmbH T2144

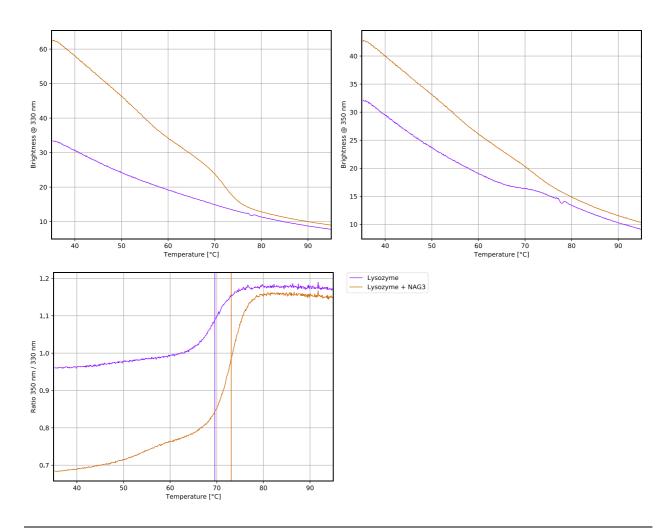
B5. Stock Concentration/Stock Buffer

25 μg powder

B6. Molecular Weight/Extinction Coefficient

627.59 Da

B7. Serial Dilution Preparation


- 1. Resuspend NAG $_3$ in 25 μL of dilution buffer to obtain a 1.6 mM solution.
- 2. Prepare a PCR-rack with 16 PCR tubes. Transfer 20 μ L of the 1.6 mM NAG₃ solution into tube **1**. Then, transfer 10 μ L of dilution buffer into tubes **2** to **16**.
- 3. Prepare a 1:1 serial dilution by transferring 10 μ L from tube to tube. Mix carefully by pipetting up and down. Remember to discard 10 μ L from tube **16** to get an equal volume of 10 μ L for all samples.
- 4. Add 10 μ L of lysozyme (10 μ M) to each tube from **16** to **1** and mix by pipetting.
- 5. Incubate for 5 minutes at room temperature in the dark before loading capillaries.

C. Applied Quality Checks

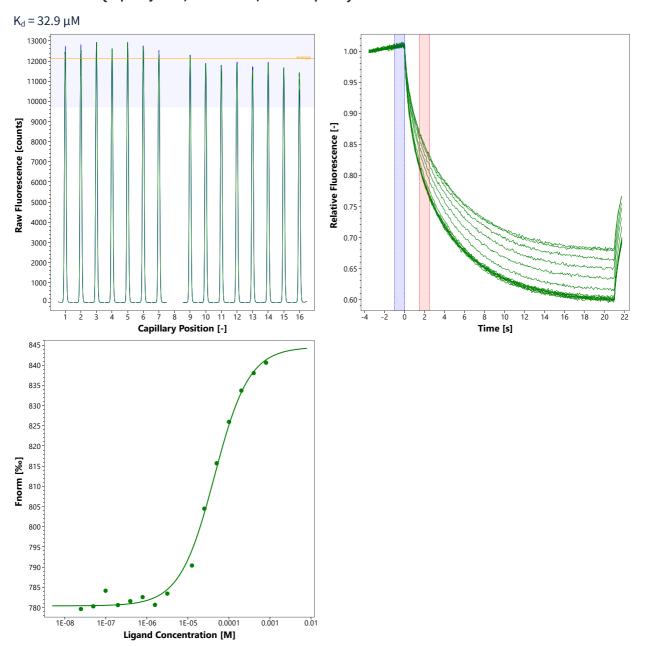
Validation of structural integrity and functionality of lysozyme using Tycho NT.6: nonotempertech.com/tycho

Lysozyme	5 μL of 20 μM lysozyme + 5 μL of dilution buffer	T _i = 69.6°C	
Lysozyme + NAG3	5 μL of 20 μM lysozyme + 5 μL of 1.6 mM NAG₃	T _i = 73.1°C	

D1. MST System/Capillaries

Monolith NT.LabelFree (NanoTemper Technologies GmbH)
Premium Capillaries Monolith NT.LabelFree (MO-Z025, NanoTemper Technologies GmbH)

D2. MST Software


MO.Control v1.6 (NanoTemper Technologies GmbH) nanotempertech.com/monolith-mo-control-software

D3. MST Experiment (Assay Buffer/Concentrations/Temperature/MST Power/Excitation Power)

Phosphate-buffered saline (PBS), pH 7.4, 0.01% Pluronic® F-127 5 μ M lysozyme | 800 μ M – 24 nM NAG₃ | 22°C | medium MST power | 10% excitation power

D4. MST Results (Capillary Scan/Time Traces/Dose Response)

D5. Reference Results/Supporting Results

 $K_d = 39.8 \, \mu M$ NanoESI

Jecklin et al., J Am Soc Mass Spectrom 19 (2008) 332–343

 $K_d = 39 \mu M$ Microchip-ESI-MS

Svobodova et al., Electrophoresis 31 (2010) 2680–2685

E. Contributors

Andreas Langer¹

¹ NanoTemper Technologies GmbH, München, Germany | nanotempertech.com