

Monolith Protocol MO-P-048

Mitochondrial Fission 1 Protein – 12 mer Peptide

Mitochondrial fission 1 protein (FIS1) is a component of the mitochondrial complex ARCosome, which promotes mitochondrial fission. FIS1 protein is involved in cell cycle and apoptosis and plays a role in several associated diseases, like diabetic cardiomyopathy, neurodegenerative diseases and cancer.

protein – peptide interaction | mitochondrial fission protein | FIS1

A1. Target/Fluorescent Molecule

Mitochondrial fission 1 protein (FIS1) uniprot.org/uniprot/Q9Y306

A2. Molecule Class/Organism

Cytosolic domain of mitochondrial outer membrane surface protein *Homo sapiens (Human)*

A3. Sequence/Formula

MEAVLNELVS VEDLLKFEKK FQSEKAAGSV SKSTQFEYAW CLVRSKYNDD IRKGIVLLEE LLPKGSKEEQ RDYVFYLAVG NYRLKEYEKA LKYVRGLLQT EPQNNQAKEL ERLIDKAMKK DGLVG

A4. Purification Strategy/Source

Nickel chromatography followed by size-exclusion chromatography, > 95 % Medical College of Wisconsin (John M. Egner)

A5. Stock Concentration/Stock Buffer

0.145 mg/mL | 10 μM 100 mM HEPES, pH 7.4, 200 mM NaCl, 1 mM DTT, 0.02 % sodium azide

A6. Molecular Weight/Extinction Coefficient

14.5 kDa 15,930 M⁻¹cm⁻¹ (ε₂₈₀)

A7. Dilution Buffer

100 mM HEPES, pH 7.4, 200 mM NaCl, 1 mM DTT, 0.02 % sodium azide, 0.05 % TWEEN® 20

A8. Labeling Strategy

Monolith Protein Labeling Kit RED – NHS 2nd Generation (MO-L011, NanoTemper Technologies GmbH) 1* Labeling Buffer NHS | 1* Dye RED-NHS 2nd Generation (10 µg) | 1* B-Column

A9. Labeling Procedure

- 1. Prepare 100 μL of a 10 μM FIS1 solution.
- 2. Use the A-Column to perform a buffer exchange into Labeling Buffer NHS **supplemented** with 1 mM GSH.
 - a. Invert A-Column to suspend slurry and twist off bottom (twist slightly in both directions).
 - b. Loosen the cap of the column and place it in a 1.5 mL microcentrifuge collection tube.
 - c. Centrifuge at **1500 × g** for **1 min** to remove excess liquid.
 - d. Add 300 μ L of Labeling Buffer NHS with GSH and centrifuge at **1500** × **g** for **1 min** (3x).
 - e. Place 100 μL of the 10 μM FIS1 solution in the center of the resin.
 - f. Place the sample in a **new** microcentrifuge collection tube and centrifuge at **1500** × **g** for **2 min**.

The collected flow-through should yield around 100 μL of ~5 μM FIS1 (~50 % recovery).

- 3. Add 25 μ L of DMSO to Dye RED-NHS 2nd Generation (10 μ g) to obtain a ~600 μ M solution. Mix the dye thoroughly by vortexing and make sure that all dye is dissolved.
- 4. Mix 10 μ L of the 600 μ M dye solution with 90 μ L of Labeling Buffer NHS with GSH to obtain 100 μ L of a 60 μ M dye solution (8x protein concentration).
- 5. Mix FIS1 and dye in a 1:1 volume ratio (200 μ L final volume).
- 6. Incubate for 30 minutes at room temperature in the dark.
- 7. In the meantime, remove the top cap of the B-Column and pour off the storage solution. Remove the bottom cap and place with adapter in a 15 mL tube.
- 8. Fill the column with dilution buffer and allow it to enter the packed resin bed completely by gravity flow. Discard the flow through collected. Repeat this step 3 more times.
- 9. Add 200 μL of the labeling reaction from step 5 to the center of the column and let sample enter the bed completely.
- 10. Add 400 μ L of dilution buffer after the sample has entered and discard the flow through.
- 11. Place column in a new collection tube, add 500 μ L of dilution buffer and collect the eluate.
- 12. Keep the labeled FIS1 (~1 $\mu M)$ on ice in the dark.

A10. Labeling Efficiency

Measurement of protein concentration and degree of labeling (DOL) using a NanoDrop[™]: nanotempertech.com/dol-calculator

Absorbance A ₂₈₀	0.021	Protein concentration	1.1 µM
Absorbance A ₆₅₀	0.096	Degree-of-labeling (DOL)	0.45

B1. Ligand/Non-Fluorescent Binding Partner

12 mer peptide (pep2)

B2. Molecule Class/Organism

Peptide

B3. Sequence/Formula

N/A

B4. Purification Strategy/Source

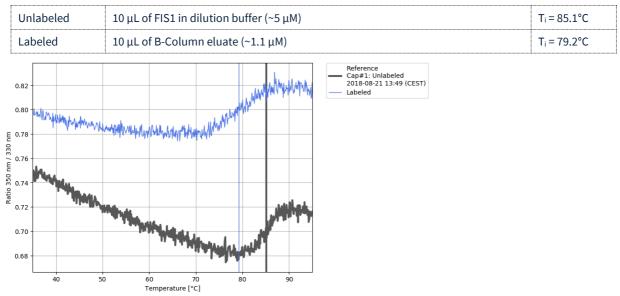
Genscript peptide synthesis

B5. Stock Concentration/Stock Buffer

5.66 mM 100 mM HEPES, pH 7.4, 200 mM NaCl, 1 mM DTT, 0.02 % sodium azide

B6. Molecular Weight/Extinction Coefficient

N/A


B7. Serial Dilution Preparation

- 1. Prepare a PCR-rack with 16 PCR tubes. Transfer 7 μL of the 5.66 mM pep2 stock solution into tube **1** and mix with 13 μL of dilution buffer to obtain 20 μL of a 2 mM solution. Then, transfer 10 μL of dilution buffer into tubes **2** to **16**.
- 2. Prepare a 1:1 serial dilution by transferring 10 μL from tube to tube. Mix carefully by pipetting up and down. Remember to discard 10 μL from tube **16** to get an equal volume of 10 μL for all samples.
- 3. Mix 2 μ L of labeled FIS1 with 198 μ L of dilution buffer to obtain 200 μ L of ~10 nM FIS1.
- 4. Add 10 μ L of labeled FIS1 (~10 nM) to each tube from **16** to **1** and mix by pipetting.
- 5. Incubate for 30 minutes at room temperature in the dark before loading capillaries.

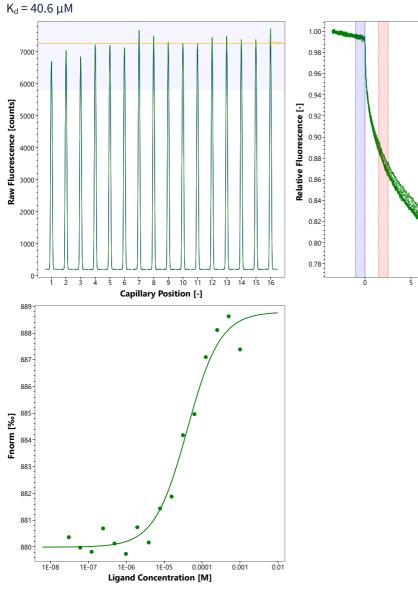
C. Applied Quality Checks

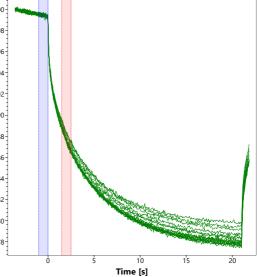
Validation of structural integrity of labeled FIS1 using Tycho NT.6:

nanotempertech.com/tycho

D1. MST System/Capillaries

Monolith NT.115^{Pico} Red (NanoTemper Technologies GmbH) Premium Capillaries Monolith NT.115 (MO-K025, NanoTemper Technologies GmbH)


D2. MST Software


MO.Control v1.6 (NanoTemper Technologies GmbH) https://nanotempertech.com/monolith-mo-control-software/

D3. MST Experiment (Assay Buffer/Concentrations/Temperature/MST Power/Excitation Power)

100 mM HEPES, pH 7.4, 200 mM NaCl, 1 mM DTT, 0.02 % sodium azide, 0.05 % TWEEN[®] 20 5 nM FIS1 | 1 mM – 30.5 nM pep2 | 25°C | medium MST power | 20% excitation power

D4. MST Results (Capillary Scan/Time Traces/Dose Response)

D5. Reference Results/Supporting Results

K_d = 200 μM2D-protein detected NMR titration experimentsInhouse-measurements at Medical College of Wisconsin

E. Contributors

John M. Egner¹, Blake Hill¹, Tanja Bartoschik²

 $^{^{\}rm 1}\,{\rm Medical}$ College of Wisconsin, Milwaukee, United States

² NanoTemper Technologies GmbH, München, Germany | nanotempertech.com