

Monolith Protocol MO-P-043

Guanine Quadruplex DNA – 1H6 Monoclonal Antibody

Guanine quadruplex (G4) structures are higher order structures readily formed both *in vitro* and *in vivo* from single stranded guanine-rich RNA or DNA molecules. These structures are often found in the telomeric regions of chromosomes and play a regulatory role in various cellular pathways. 1H6 is a mouse monoclonal antibody which strongly binds to synthetic G4 DNA structures and can serve as a tool for detection of G4 structures *in situ*.

G-quadruplex DNA | antibody | stoichiometry

A1. Target/Fluorescent Molecule

G4 oligonucleotides

A2. Molecule Class/Organism

Synthetic oligonucleotides

A3. Sequence/Formula

(T ₄ G ₄) ₂	5' Cy5 TTT TGG GGT TTT GGG G 3'
(T ₄ G ₃) ₂	5' Cy5 TTT TGG GTT TTG GG 3'
(T ₃ G ₃) ₂	5' Cy5 TTT GGG TTT GGG 3'
(T ₃ G ₄) ₂	5' Cy5 TTT GGG GTT TGG GG 3'
МҮС	5' Cy5 TGA GGG TGG GTA GGG TGG GTA A 3'
(A ₄ G ₄) ₂	5' Cy5 AAA AGG GGA AAA GGG G 3'
(C ₄ G ₄) ₂	5' Cy5 CCC CGG GGC CCC GGG G 3'
poly(T)	5' Cy5 TTT TTT TTT TTT 3'

A4. Purification Strategy/Source

Purified with high-performance liquid chromatography (HPLC) IDT(Leuven, Belgium)

Oligonucleotides were diluted to 10 µM in TE buffer (10 mM Tris-HCl, pH 7.5, 100 mM KCl, 1 mM EDTA). Following denaturation for 10 min at 95°C, G4 structures could form overnight by slowly cooling to room temperature in the heating block.

A5. Stock Concentration/Stock Buffer

100 µM ddH₂O

A6. Molecular Weight/Extinction Coefficient

 5'Cy5
 Single stranded, linear (T₄G₄)₂

 532.6 Da
 5,005.26 Da

 250,000 M⁻¹cm⁻¹ (ε₆₄₈)
 147,000 M⁻¹cm⁻¹ (ε₂₆₀)

Single stranded sequences are used to prepare quadruplexes. Quadruplexes could be tetramolecular, bimolecular and unimolecular.

A7. Dilution Buffer

400 mM Na PBS, 0.5% BSA, 0.05% TWEEN[®] 20

A8. Labeling Strategy

5' Cy5 labeled

A9. Labeling Procedure

N/A

A10. Labeling Efficiency

HPLC-purified, 100% labeled DNA

B1. Ligand/Non-Fluorescent Binding Partner

1H6 monoclonal mouse antibody (mAb)

B2. Molecule Class/Organism

Monoclonal antibody

B3. Sequence/Formula

Heavy Chain		CDRH-1			CDRH-2		CDRH-3
1H6	27 G F T	30 35 F R	38 NYW	56 I R L	59 62 KSDNYA	65 ⊤	105 T N W Y Y F D Y
Light Chain		CDRL-1			CDRL-2		CDRL-3
	27	32	34	38	56 65	1	05
1H6	QSL	LYS	NGKT	Y	L V S	V	QGTHFPLT
A device of five we bleve device a set of 1							

Adapted from Henderson et al.¹

¹ Henderson et al., Nucleic Acids Research, 42 (2), 2014, 860–869

B4. Purification Strategy/Source

Intermolecular Guanine Quadruplex DNA Mouse, Monoclonal Antibody (1H6) MédiMabs (Montreal, Canada) MM-0265-P

B5. Stock Concentration/Stock Buffer

1 mg/mL | 6.45 μM PBS

B6. Molecular Weight/Extinction Coefficient

150 kDa

B7. Serial Dilution Preparation

- 1. Mix 31 μ L of the 6.45 μ M 1H6 solution with 69 μ L of dilution buffer to obtain 100 μ L of a 2 μ M solution.
- 2. Prepare a PCR-rack with 16 PCR tubes. Transfer 40 μ L of the 2 μ M 1H6 solution into tube **1**. Then, transfer 20 μ L of dilution buffer into tubes **2** to **16**.
- 3. Prepare a 1:1 serial dilution by transferring 20 μL from tube to tube. Mix carefully by pipetting up and down. Remember to discard 20 μL from tube **16** to get an equal volume of 20 μL for all samples.
- 4. Mix 2 μL of 10 μM 5'Cy5 G-quadruplex oligonucleotide with 398 μL of dilution buffer to obtain 400 μL of a 50 nM solution.
- 5. Add 20 µL of 50 nM 5'Cy5 G-quadruplex oligonucleotide to each tube from **16** to **1** and mix by pipetting.
- 6. Incubate tubes for 5 minutes at room temperature in the dark before loading capillaries.

Dilution series over wide range to narrow down point of saturation

- 1. Mix 8 μL of 10 μM 5'Cy5 G-quadruplex oligonucleotide with 8 μL of 10 μM unlabeled G-quadruplex oligonucleotide and 384 μL of dilution buffer to obtain 400 μL of a 400 nM solution.
- 2. Prepare a PCR-rack with 16 new PCR tubes. Transfer 40 μ L of the 2 μ M 1H6 solution into tube **1**. Then, transfer 20 μ L of dilution buffer into tubes **2** to **16**.
- 3. Prepare a 1:1 serial dilution by transferring 20 μL from tube to tube. Mix carefully by pipetting up and down. Remember to discard 20 μL from tube **16** to get an equal volume of 20 μL for all samples.
- 4. Add 20 µL of 400 nM 5'Cy5 G-quadruplex oligonucleotide to each tube from **16** to **1** and mix by pipetting.
- 5. Incubate tubes for 5 minutes at room temperature in the dark before loading capillaries.

Dilution series over small concentration range to precisely determine stoichiometry

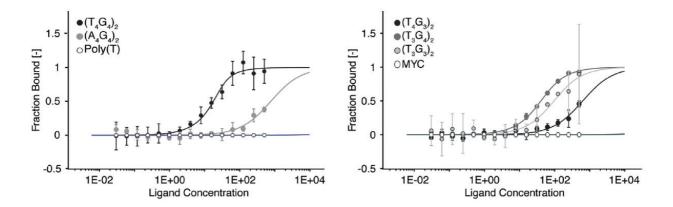
- 1. Mix 15 μ L of the 2 μ M 1H6 solution with 123 μ L of dilution buffer to obtain 138 μ L of a 700 nM solution.
- 2. Prepare a PCR-rack with 16 PCR tubes. Transfer 16 μL, 15 μL, ..., 2 μL, 1 μL of the 700 nM 1H6 solution into tubes **1** to **16**. Then, transfer 1 μL, 2 μL, ..., 14 μL, 15 μL of dilution buffer into tubes **2** to **16** to get an equal volume of 16 μL for all samples.
- 3. Prepare a 1:1 serial dilution by transferring 16 μL from tube to tube. Mix carefully by pipetting up and down. Remember to discard 16 μL from tube **16** to get an equal volume of 16 μL for all samples.
- 4. Add 16 µL of 400 nM 5'Cy5 G-quadruplex oligonucleotide to each tube from **16** to **1** and mix by pipetting.
- 5. Incubate tubes for 5 minutes at room temperature in the dark before loading capillaries.

D1. MST System/Capillaries

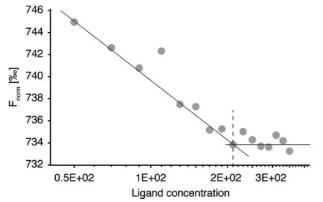
Monolith NT.115 Red (NanoTemper Technologies GmbH) Capillaries Monolith NT.115 (MO-K022, NanoTemper Technologies GmbH)

D2. MST Software

MO.AffinityAnalysis v2.3 (NanoTemper Technologies GmbH) nanotempertech.com/monolith/#monolith-software


D3. MST Experiment (Assay Buffer/Concentrations/Temperature/MST Power/Excitation Power)

400 mM Na PBS, 0.5% BSA, 0.05% TWEEN[®] 20 25 nM G4s | 1 μM – 0.03 nM 1H6 antibody | 24°C | medium MST power | 80% excitation power 400 mM Na PBS, 0.5% BSA, 0.05% TWEEN[®] 20 200 nM G4s | 1 μM – 0.03 nM and 350 nM – 50 nM 1H6 antibody | 24°C | medium MST power | 40% excitation power


D4. MST Results (Capillary Scan/Time Traces/Dose Response)

(T ₄ G ₄) ₂	K _d = 5 nM		
(T ₄ G ₃) ₂	K _d = 620 nM		
(T ₃ G ₃) ₂	K _d = 83 nM		
(T ₃ G ₄) ₂	K _d = 28 nM		
МҮС	No binding		
(A ₄ G ₄) ₂	K _d = 754 nM		
(C ₄ G ₄) ₂	K _d = 184 nM		
poly(T)	No binding		

Kazemier et al., Nucleic Acids Research, 45 (10), 2017, 5913–5919

Intersection of linear fits² at ~215 nM of 1H6 (200 nM of G4S) \rightarrow 1:1 stoichiometry

D5. Reference Results/Supporting Results

G-quadruplex DNA

```
Sen and Gilbert, Methods in Enzymology 211, 1992, 191-199 | Henderson et al., Nucleic Acids Research, 42 (2), 2014, 860–869
Hoffmann et al., Nucleic Acids Research, 44 (1), 2016, 152–163 | Kazemier et al., Nucleic Acids Research, 45 (10), 2017, 5913–5919
```

E. Contributors

Hinke G. Kazemier³, Katarzyna Walkiewicz⁴

² Linear regression lines of the saturated and non-saturated data points were set manually.

³ European Research Institute for the Biology of Ageing University Medical Center Groningen (ERIBA/UMCG), Netherlands

⁴ NanoTemper Technologies GmbH, München, Germany | nanotempertech.com