

Monolith Protocol MO-P-039

FYN – Staurosporine

FYN is a non-receptor tyrosine-protein kinase that plays a role in many biological processes including regulation of cell growth and survival, cell adhesion, integrin-mediated signaling, cytoskeletal remodeling, cell motility, immune response and axon guidance. Staurosporine is a relatively non-selective protein kinase inhibitor, which blocks many kinases to different degrees. Staurosporine is often used as a general method for inducing apoptosis.

protein – small molecule interaction | kinase | inhibitor

A1. Target/Fluorescent Molecule

Tyrosine-protein kinase FYN uniprot.org/uniprot/P06241

A2. Molecule Class/Organism

Non-receptor tyrosine-protein kinase Homo sapiens (Human)

A3. Sequence/Formula

MKDVWEIPRE SLQLIKRLGN GQFGEVWMGT WNGNTKVAIK TLKPGTMSPE SFLEEAQIMK KLKHDKLVQL YAVVSEEPIY IVTEYMNKGS LLDFLKDGEG RALKLPNLVD MAAQVAAGMA YIERMNYIHR DLRSANILVG NGLICKIADF GLARLIEDNE YTARQGAKFP IKWTAPEAAL YGRFTIKSDV WSFGILLTEL VTKGRVPYPG MNNREVLEQV ERGYRMPCPQ DCPISLHELM IHCWKKDPEE RPTFEYLQSF LEDYGHHHHH H

A4. Purification Strategy/Source

Crelux GmbH

A5. Stock Concentration/Stock Buffer

10 mg/mL | 321 μM 20 mM Tris-HCl, pH 8.5, 156 mM NaCl, 5 mM DTT

A6. Molecular Weight/Extinction Coefficient

31 kDa 49,640 M⁻¹cm⁻¹ (ε₂₈₀)

A7. Dilution Buffer

10 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.005% TWEEN® 20

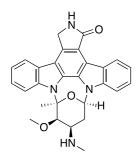
A8. Labeling Strategy

Monolith Protein Labeling Kit RED – NHS (MO-L001, NanoTemper Technologies GmbH) 1* Labeling Buffer NHS | 1* A-Column | 1* 10 μg RED-NHS dye | 1* B-Column

A9. Labeling Procedure

- 1. Add 98.4 μ L of Labeling Buffer NHS to 1.6 μ L of 321 μ M FYN to obtain 100 μ L of a 5 μ M solution.
- 2. Use the A-Column to perform a buffer exchange into Labeling Buffer NHS.
 - a. Invert A-Column to suspend slurry and twist off bottom (twist slightly in both directions).
 - b. Loosen the cap of the column and place it in a 1.5 mL microcentrifuge collection tube.
 - c. Centrifuge at **1500 × g** for **1 min** to remove excess liquid.
 - d. Add 300 μ L of Labeling Buffer NHS and centrifuge at **1500** × **g** for **1 min** (3x).
 - e. Place 100 μL of the 10 μM FYN solution in the center of the resin.
 - f. Place the sample in a **new** microcentrifuge collection tube and centrifuge at **1500** × **g** for **2 min**. The collected flow-through should yield around 100 μ L of ~3 μ M FYN (~60 % recovery).
- 3. Add 30 μ L of DMSO to 10 μ g RED-NHS dye to obtain a ~470 μ M solution. Mix the dye thoroughly by vortexing and make sure that all dye is dissolved.
- 4. Mix 3.2 μ L of the 470 μ M dye solution with 96.8 μ L of Labeling Buffer NHS to obtain 100 μ L of a 15 μ M dye solution (~5x protein concentration).
- 5. Mix FYN and dye in a 1:1 volume ratio (200 µL final volume, 1.6% final DMSO concentration).
- 6. Incubate for 30 minutes at room temperature in the dark.
- 7. In the meantime, remove the top cap of the B-Column and pour off the storage solution. Remove the bottom cap and place with adapter in a 15 mL tube.
- 8. Fill the column with dilution buffer and allow it to enter the packed resin bed completely by gravity flow. Discard the flow through collected. Repeat this step 3 more times.
- 9. Add 200 μ L of the labeling reaction from step 5 to the center of the column and let sample enter the bed completely.
- 10. Add 400 μ L of dilution buffer after the sample has entered and discard the flow through.
- 11. Place column in a new collection tube, add 500 μ L of dilution buffer and collect the eluate.
- 12. Centrifuge for 5 min at 14,000 rpm and 8°C.
- 13. Keep the labeled FYN (~0.6 μ M) on ice in the dark.

A10. Labeling Efficiency


Measurement of protein concentration and degree of labeling (DOL) using a NanoDrop[™]: nanotempertech.com/dol-calculator

Absorbance A ₂₈₀	0.04	Protein concentration	0.6 μΜ
Absorbance A ₆₅₀	0.41	Degree-of-labeling (DOL)	2.7

B1. Ligand/Non-Fluorescent Binding Partner

Staurosporine

B2. Molecule Class/Organism

Protein kinase inhibitor Streptomyces staurosporeus

B3. Sequence/Formula

 $C_{28}H_{26}N_4O_3$

B4. Purification Strategy/Source

Sigma-Aldrich GmbH

B5. Stock Concentration/Stock Buffer

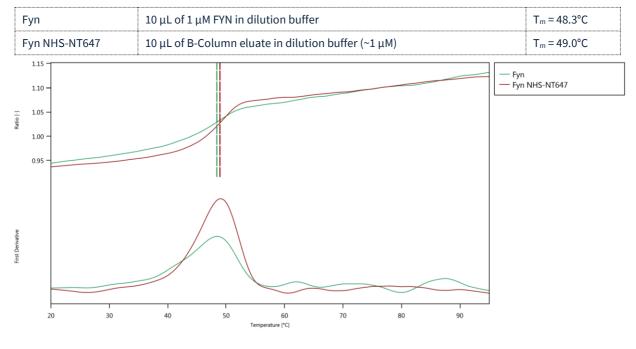
23.3 mg/mL | 50 mM DMSO

B6. Molecular Weight/Extinction Coefficient

466.53 Da

B7. Serial Dilution Preparation

- 1. Transfer 1 μL of 50 mM Staurosporine into 99 μl of DMSO to obtain 100 μL of a 500 μM Staurosporine solution.
- 2. Prepare a PCR-rack with 16 PCR tubes. Transfer 20 μL of the 500 μM Staurosporine solution into tube **1**. Then, transfer 10 μL of DMSO into tubes **2** to **16**.
- 3. Prepare a 1:1 serial dilution by transferring 10 μL from tube to tube. Mix carefully by pipetting up and down. Remember to discard 10 μL from tube **16** to get an equal volume of 10 μL for all samples.
- 4. Add 27 μ L of dilution buffer to each tube and mix well by pipetting.
- 5. Mix 12.8 μ L of labeled FYN with 787 μ L of dilution buffer to obtain 800 μ L of ~16 nM FYN.
- 6. Add 10 μL of 16 nM labeled Fyn-kinase to 16 fresh tubes
- 7. Add 0.8 μl of Staurosporine dilution to each tube from **16** to **1** and mix by pipetting.
- 8. Incubate for 30 minutes at room temperature in the dark before loading capillaries.



B8. SD-Test

- 1. Prepare the SD-mix: Dilute 400 μ L of 10% SDS and 40 μ L of 1 M DTT in 560 μ L water to obtain a solution containing 4% SDS and 40 mM DTT.
- 2. Transfer 7 μ L of the SD-mix to six PCR tubes.
- 3. Add 7 μ L from the remainder of tubes **1** to **3** and **14** to **16** to the tubes containing 7 μ L SD-mix. Mix well by pipetting.
- 4. Place samples on a heat block set to 95°C for 5 minutes to denature the protein, then allow to cool at 25°C for 10 minutes before loading into capillaries.

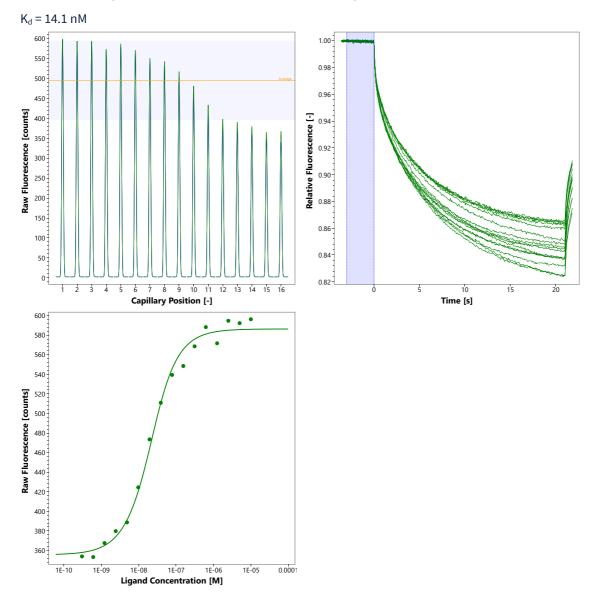
C. Applied Quality Checks

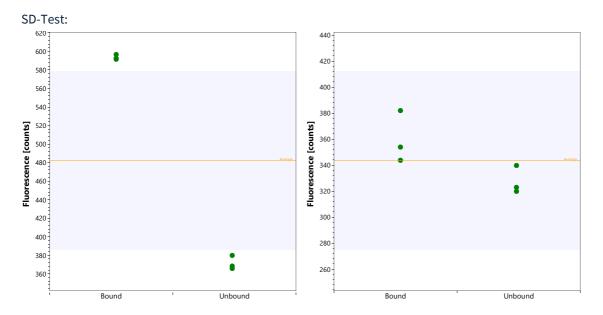
Validation of structural integrity of labeled FYN using Prometheus NT.48: nanotempertech.com/prometheus

D1. MST System/Capillaries

Monolith NT.115 Red (NanoTemper Technologies GmbH) Premium Capillaries Monolith NT.115 (MO-K025, NanoTemper Technologies GmbH)

D2. MST Software


MO.Control v1.6 (NanoTemper Technologies GmbH) https://nanotempertech.com/monalith-mo-control-software/


D3. MST Experiment (Assay Buffer/Concentrations/Temperature/MST Power/Excitation Power)

10 mM Tris-HCl, pH 7.5, 150 mM NaCl, 2% DMSO, 0.005% TWEEN® 20 15 nM FYN | 10 μ M – 0.31 nM Staurosporine | 25°C | medium MST power | 20% excitation power

D4. MST Results (Capillary Scan/Time Traces/Dose Response)

D5. Reference Results/Supporting Results

N/A

E. Contributors

Moran Jerabek-Willemsen¹, Nina Schlinck²

¹ Crelux GmbH, Planegg-Martinsried, Germany

² NanoTemper Technologies GmbH, München, Germany | nanotempertech.com