

Monolith Protocol MO-P-037

DNA Aptamer – AMP (displacement assay)

The DNA aptamer for adenosine is a highly conserved sequence that is a widely used model aptamer for biosensor development. It also binds ADP and ATP, and with slightly weaker affinity AMP. The affinity between unlabeled aptamer and AMP can be determined by a displacement assay with a short, fluorescently labeled ssDNA (cDNA) complementary to parts of the aptamer sequence.

DNA – small molecule interaction | aptamer | displacement assay

A1. Target/Fluorescent Molecule

AMP aptamer

A2. Molecule Class/Organism

DNA aptamer

A3. Sequence/Formula

5' ACC TGG GGG AGT ATT GCG GAG GAA GGT 3'

A4. Purification Strategy/Source

metabion international AG

A5. Stock Concentration/Stock Buffer

17.1 nmol

A6. Molecular Weight/Extinction Coefficient

8485 Da 273,300 M⁻¹cm⁻¹ (ε₂₆₀)

A7. Dilution Buffer

20 mM Tris-HCl, pH 7.8, 300 mM NaCl, 5 mM MgCl₂, 0.05% TWEEN® 20

A8. Labeling Strategy

Competitive binding assay with Cy5 labeled complementary ssDNA (cDNA, metabion international AG) 5'Cy5 ACC TTC CTC C 3'

A9. Labeling Procedure

- 1. Dissolve 26.1 nmol cDNA in 261 μL ddH_2O to obtain a 100 μM cDNA solution.
- 2. Dissolve 17.1 nmol AMP aptamer in 171 μL ddH_2O to obtain a 100 μM AMP aptamer solution.
- 3. Add 98 μL of dilution buffer to 2 μL of 100 μM cDNA to obtain 100 μL of a 2 μM cDNA solution.
- 4. Add 96 μL of dilution buffer to 4 μL of 100 μM AMP aptamer to obtain 100 μL of a 4 μM AMP aptamer solution.
- 5. Mix 196 μL of dilution buffer with 2 μL of 2 μM cDNA and 2 μL of 4 μM AMP aptamer to obtain 200 μL of a 20 nM cDNA, 40 nM AMP aptamer solution.¹

A10. Labeling Efficiency

HPLC-purified, 100% labeled DNA

B1. Ligand/Non-Fluorescent Binding Partner

Adenosine monophosphate (AMP)

B2. Molecule Class/Organism

Nucleotide monophosphate

B3. Sequence/Formula

 $C_{10}H_{14}N_5O_7P$

B4. Purification Strategy/Source

Sigma-Aldrich GmbH 01930

B5. Stock Concentration/Stock Buffer

17.4 mg/mL | 50 mM 20 mM Tris-HCl, pH 7.8, 300 mM NaCl, 5 mM MgCl₂, 0.05% TWEEN[®] 20

¹ As the K_d between cDNA and AMP aptamer is ~8 nM (c.f. section D4), a final concentration of 20 nM AMP aptamer results in a sufficient complex formation between cDNA and AMP aptamer.

B6. Molecular Weight/Extinction Coefficient

347.22 Da

B7. Serial Dilution Preparation

cDNA – AMP aptamer

- 1. Add 198 μL of dilution buffer to 2 μL of 2 μM cDNA to obtain 200 μL of a 20 nM solution.
- 2. Prepare a PCR-rack with 16 PCR tubes. Transfer 20 μ L of 4 μ M AMP aptamer into tube **1**. Then, transfer 10 μ L of dilution buffer into tubes **2** to **16**.
- 3. Prepare a 1:1 serial dilution by transferring 10 μ L from tube to tube. Mix carefully by pipetting up and down. Remember to discard 10 μ L from tube **16** to get an equal volume of 10 μ L for all samples.
- 4. Add 10 μ L of cDNA (20 nM) to each tube from **16** to **1** and mix by pipetting.
- 5. Incubate for 20 minutes at room temperature in the dark before loading capillaries.

AMP aptamer – AMP

- 1. Prepare a new PCR-rack with 16 PCR tubes. Transfer 20 μ L of the 50 mM AMP solution into tube **1**. Then, transfer 10 μ L of dilution buffer into tubes **2** to **16**.
- 2. Prepare a 1:1 serial dilution by transferring 10 μL from tube to tube. Mix carefully by pipetting up and down. Remember to discard 10 μL from tube **16** to get an equal volume of 10 μL for all samples.
- 3. Add 10 μ L of the 20 nM cDNA, 40 nM AMP aptamer solution to each tube from **16** to **1** and mix by pipetting.
- 4. Incubate for 20 minutes at room temperature in the dark before loading capillaries.

D1. MST System/Capillaries

Monolith NT.115^{PICO} Red (NanoTemper Technologies GmbH) Capillaries Monolith NT.115 (MO-K022, NanoTemper Technologies GmbH)

D2. MST Software

MO.Control v1.6 (NanoTemper Technologies GmbH) nanotempertech.com/monolith-mo-control-software

20

15

D3. MST Experiment (Assay Buffer/Concentrations/Temperature/MST Power/Excitation Power)

cDNA – AMP aptamer

20 mM Tris, pH 7.8, 300 mM NaCl, 5 mM MgCl₂, 0.05% TWEEN® 20 10 nM cDNA \mid 2 μ M AMP – 61 pM aptamer \mid 25°C \mid medium MST power \mid 3% excitation power

AMP aptamer – AMP

20 mM Tris, pH 7.8, 300 mM NaCl, 5 mM MgCl₂, 0.05% TWEEN[®] 20 10 nM cDNA, 20 nM AMP aptamer | 25 mM – 763 nM AMP | 25° C | medium MST power | 3% excitation power

D4. MST Results (Capillary Scan/Time Traces/Dose Response)

cDNA – AMP aptamer

AMP aptamer – AMP

D5. Reference Results/Supporting Results

 $K_d = 58 \pm 2 \ \mu M$ Frontal chromatography analysis Deng et al., Anal Chem 73 (2001) 5415-5421

E. Contributors

Andreas Langer³

 $^{^{2}}$ For calculation of K_i, see the NanoTemper 'FAQ Competitive Binding Assay'.

³ NanoTemper Technologies GmbH, München, Germany | nanotempertech.com