

Monolith Protocol MO-P-034

Ricin A Chain – P1-P2 Heterodimer

The ribosomal stalk also known as P-stalk is a pentameric complex composed of universally conserved proteins. The stalk is part of the GTPase Associated Centre (GAC) and represents one of its main functional elements. The role of the P-stalk within GAC is to recruit translational GTPases, such as elongation factor 2 (EF2) and stimulation of factor-dependent GTP hydrolysis. Interestingly, a family of ribosomal inactivating proteins (RIP) engages with P-stalk to activate its mechanism of inhibition. For example, the interaction of Ricin (type II RIP) with ribosomal stalk leads to depurination of a sarcin-ricin loop and translation stalling.

protein – protein interaction | ribosomal proteins | P-stalk | ricin | P1-P2

A1. Target/Fluorescent Molecule

Ricin A chain (RTA) uniprot.org/uniprot/P02879

A2. Molecule Class/Organism

Toxin subunit Ricinus communis (Castor Bean)

A3. Sequence/Formula

IFPKQYPIIN FTTAGATVQS YTNFIRAVRG RLTTGADVRH EIPVLPNRVG LPINQRFILV ELSNHAELSV TLALDVTNAY VVGYRAGNSA YFFHPDNQED AEAITHLFTD VQNRYTFAFG GNYDRLEQLA GNLRENIELG NGPLEEAISA LYYYSTGGTQ LPTLARSFII CIQMISEAAR FQYIEGEMRT RIRYNRRSAP DPSVITLENS WGRLSTAIQE SNQGAFASPI QLQRRNGSKF SVYDVSILIP IIALMVYRCA PPPSSQF

A4. Purification Strategy/Source

RTA was expressed in Escherichia coli BL21(DE3)RIL cells and N-terminal 10xHis-tagged recombinant RTA was purified using Ni-NTA agarose from QIAGEN (Valencia, CA, USA). The protein showed a single band on SDS-PAGE by Coomassie Brilliant Blue R-250 staining and by immunoblot analysis and was active in in vitro binding assays.

A5. Stock Concentration/Stock Buffer

1.26 mg/mL | 42 μM 50 mM Tris-HCl, pH 7.8, 150 mM NaCl, 10 mM MgCl_2

A6. Molecular Weight/Extinction Coefficient

29.9 kDa 26,485 M⁻¹cm⁻¹ (ε₂₈₀)

A7. Dilution Buffer

Phosphate-buffered saline (PBS, pH 7.4), 0.05% TWEEN® 20

A8. Labeling Strategy

Monolith Protein Labeling Kit RED-tris-NTA 2nd Generation (MO-L018, NanoTemper Technologies GmbH) 1* 125 pmol RED-tris-NTA 2nd Generation Dye

A9. Labeling Procedure

- 1. Suspend 125 pmol RED-tris-NTA 2nd Generation Dye in 25 μL of dilution buffer to obtain a 5 μM dye solution.
- 2. Prepare a 20 nM dye solution by mixing 2 μ L of dye (5 μ M) and 498 μ L of dilution buffer.
- 3. Prepare a 200 nM RTA solution by mixing 2.4 μL of 42 μM RTA and 498 μL of dilution buffer.
- 4. Mix 500 μL of RTA (200 nM) with 500 μL of dye (20 nM).
- 5. Incubate for 30 minutes at room temperature.
- 6. Centrifuge for 10 min at 4°C and 15 000 \times g.

A10. Labeling Efficiency

N/A

B1. Ligand/Non-Fluorescent Binding Partner

P1-P2 heterodimer uniprot.org/uniprot/P05386 | uniprot.org/uniprot/P05387

B2. Molecule Class/Organism

Ribosomal protein Homo sapiens (Human)

B3. Sequence/Formula

Ρ1

MASVSELACI YSALILHDDE VTVTEDKINA LIKAAGVNVE PFWPGLFAKA LANVNIGSLI CNVGAGGPAP AAGAAPAGGP APSTAAAPAE EKKVEAKKEE SEESDDDMGF GLFD P2 MRYVASYLLA ALGGNSSPSA KDIKKILDSV GIEADDDRLN KVISELNGKN IEDVIAQGIG KLASVPAGGA VAVSAAPGSA APAAGSAPAA AEEKKDEKKE ESEESDDDMG FGLFD

B4. Purification Strategy/Source

Recombinant human P1 and P2 proteins, truncated forms, were expressed in Escherichia coli BL21(DE3)RIL cells and purified using a procedure described previously for the yeast P proteins. The P1-P2 heterocomplex was prepared following the denaturation/renaturation procedure established for the yeast P protein complex.¹

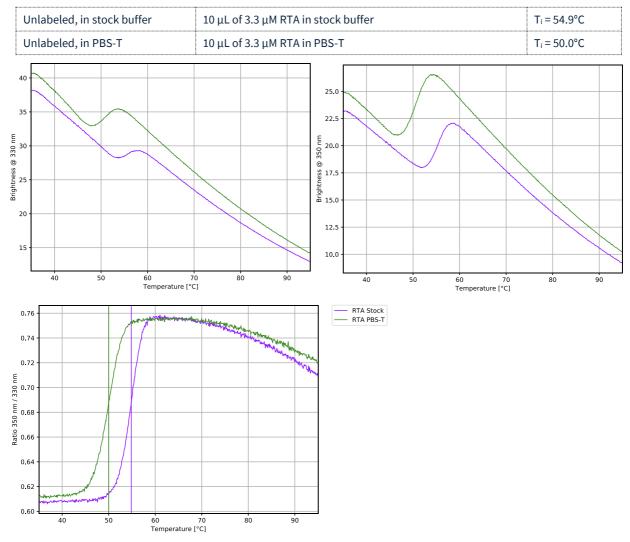
B5. Stock Concentration/Stock Buffer

0.5 mg/mL | 115 μ M 50 mM Tris-HCl, pH 7.8, 150 mM NaCl, 10 mM MgCl₂

B6. Molecular Weight/Extinction Coefficient

23.2 kDa 10,095 M⁻¹cm⁻¹ (ε₂₈₀)

B7. Serial Dilution Preparation


- 1. Prepare a PCR-rack with 16 PCR tubes. Transfer 20 μ L of the 115 μ M P1-P2 solution into tube **1**. Then, transfer 10 μ L of stock buffer into tubes **2** to **16**.
- 2. Prepare a 1:1 serial dilution by transferring 10 μL from tube to tube. Mix carefully by pipetting up and down. Remember to discard 10 μL from tube **16** to get an equal volume of 10 μL for all samples.
- 3. Add 10 μ L of 100 nM labeled RTA to each tube from **16** to **1** and mix by pipetting.
- 4. Incubate for 5 minutes at room temperature in the dark before loading capillaries.

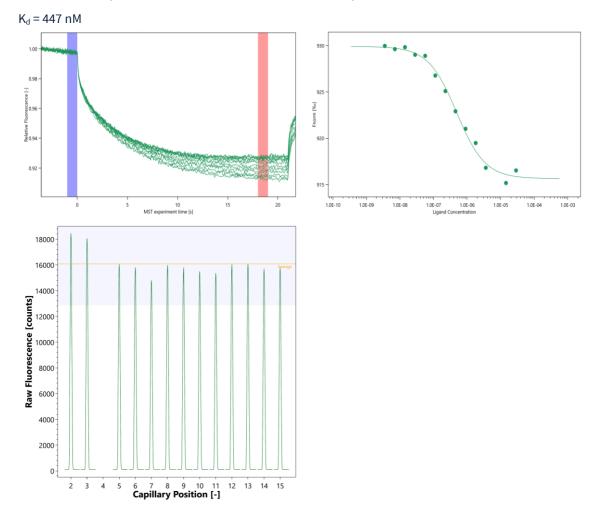
¹ See Grela et al., J Biochem 143, 169-177 (2008) and Tchorzewski et al., Protein Expr. Purif. 15, 40-47 (1999) for further details.

C. Applied Quality Checks

Validation of structural integrity of RTA using Tycho NT.6: nanotempertech.com/tycho

D1. MST System/Capillaries

Monolith NT.115^{PICO} Red (NanoTemper Technologies GmbH) Premium Capillaries Monolith NT.115 (MO-K025, NanoTemper Technologies GmbH)


D2. MST Software

MO.Control v1.6 (NanoTemper Technologies GmbH) https://nanotempertech.com/monolith-mo-control-software/

D3. MST Experiment (Assay Buffer/Concentrations/Temperature/MST Power/Excitation Power)

25 mM Tris-HCl, PBS-T, pH 7.4-7.8, 5 mM MgCl₂, 0.025% TWEEN[®] 20 50 nM RTA | 45.5 μ M – 1.39 nM P1-P2 | 25°C | low MST power | 20% excitation power

D4. MST Results (Capillary Scan/Time Traces/Dose Response)

D5. Reference Results/Supporting Results

Kd = 21 nMApparent Kd, BioLayer Interferometry (BLI)Grela et al., Scientific Reports 7, 5608 (2017)

E. Contributors

Przemysław Grela², Patrycja Horbowicz-Drożdżal², Jakub Nowak³

² Department of Molecular Biology, Maria Curie Sklodowska University, Lublin, Poland

³ NanoTemper Technologies Sp. z.o.o., Kraków, Poland | nanotempertech.com