

Monolith Protocol MO-P-030

CHP3 - NHE1

The Na⁺/H⁺ exchanger NHE1 is critical for cell vitality as it controls intracellular pH and cell volume. Its functionality is influenced by calcineurin B homologous proteins (CHPs). The human isoform CHP3 is important for transport of NHE1 to the plasma membrane and for its activity.

protein – protein interaction | sodium/proton exchanger | calcium-binding EF-hand protein

A1. Target/Fluorescent Molecule

Calcineurin B homologous protein 3 (CHP3) uniprot.org/uniprot/Q96852

A2. Molecule Class/Organism

Calcium-binding EF-hand protein Homo sapiens (Human)

A3. Sequence/Formula

MKHHHHHHPM SDYDIPTTEN LYFQGAGSMK QGAAHSASEE VRELEGKTGF SSDQIEQLHR RFKQLSGDQP TIRKENFNNV PDLELNPIRS KIVRAFFDNR NLRKGPSGLA DEINFEDFLT IMSYFRPIDT TMDEEQVELS RKEKLRFLFH MYDSDSDGRI TLEEYRNVVE ELLSGNPHIE KESARSIADG AMMEAASVCM GQMEPDQVYE GITFEDFLKI WQGIDIETKM HVRFLNMETM ALCH

A4. Purification Strategy/Source

CHP3 was produced in E. coli BL21 (DE3) cells and purified using Ni-affinity chromatography and SEC.

A5. Stock Concentration/Stock Buffer

10 mg/mL | $350~\mu\text{M}$ 20 mM HEPES, pH 7.2, 150 mM NaCl, 20 mM DTT, 1 M Sucrose

A6. Molecular Weight/Extinction Coefficient

28 kDa 14,440 M⁻¹cm⁻¹ (ε₂₈₀)

A7. Dilution Buffer

20 mM HEPES, pH 7.2, 150 mM NaCl, 10 mM MgCl₂, 5 mM TCEP¹, 0.05% TWEEN® 20

¹ Since TCEP solutions are very acidic (~pH 2.5), all TCEP stock solutions were brought to pH 7.2 with NaOH.

A8. Labeling Strategy

Monolith Protein Labeling Kit RED – NHS (MO-L001, NanoTemper Technologies GmbH) 1^* A-Column | 2^* 10 μ g RED-NHS dye | 1^* B-Column

A9. Labeling Procedure

- 1. Thaw 100 μL of the 350 μM CHP3 stock.
- 2. Prepare a buffer solution containing 50 mM HEPES, pH 7.6, 150 mM NaCl, 1 mM TCEP (Labeling Buffer).
- 3. Use the A-Column to perform a buffer exchange into Labeling Buffer.
 - a. Invert A-Column to suspend slurry and twist off bottom (twist slightly in both directions).
 - b. Loosen the cap of the column and place it in a 1.5 mL microcentrifuge collection tube.
 - c. Centrifuge at **1500** × **g** for **1 min** to remove excess liquid.
 - d. Add 300 μ L of Labeling Buffer and centrifuge at **1500** × **g** for **1 min** (3x).
 - e. Place 100 μ L of the 350 μ M CHP3 solution in the center of the resin.
 - f. Place the sample in a **new** microcentrifuge collection tube and centrifuge at **1500** × **g** for **2 min**.

The collected flow-through should yield around 100 μL of ~250 μM CHP3 (70 – 80% recovery).

- 4. Determine the concentration of CHP3 in Labeling Buffer spectroscopically (NanoDrop[™]) and subsequently dilute it to 40 μM with Labeling Buffer.
- 5. Add 50 μ L of Labeling Buffer each to two vials of 10 μ g RED-NHS dye to obtain a 280 μ M solution, respectively. Mix the dye thoroughly by vortexing and make sure that all dye is dissolved. Then, combine both dye solutions to obtain a total volume of 100 μ L of dye solution.
- 6. Mix 100 μ L of the 280 μ M dye solution with 100 μ L of 40 μ M CHP3 (200 μ L final volume, 7x protein concentration).
- 7. Incubate for 30 minutes at room temperature in the dark.
- 8. In the meantime, remove the top cap of the B-Column and pour off the storage solution. Remove the bottom cap and place with adapter in a 15 mL tube.
- 9. Fill the column with dilution buffer and allow it to enter the packed resin bed completely by gravity flow. Discard the flow through collected. Repeat this step 3 more times.
- 10. Add 200 μ L of the labeling reaction from step 7 to the center of the column and let sample enter the bed completely.
- 11. Add 300 μL of dilution buffer after the sample has entered and discard the flow through.
- 12. Add 600 μ L of dilution buffer and collect the eluate three drops at a time (~100 μ l fractions) in 0.6 mL tubes.
- 13. Measure OD_{280} and OD_{650} of each fraction, then combine fractions containing protein.
- 14. Keep the labeled CHP3 (~20 μM) on ice in the dark.

A10. Labeling Efficiency

Measurement of protein concentration and degree of labeling (DOL) using a Cary 4000 UV-Vis spectrophotometer (Agilent):

nanotempertech.com/dol-calculator

Absorbance A ₂₈₀	0.31	Protein concentration	19.4 μΜ
Absorbance A ₆₅₀	1.06	Degree-of-labeling (DOL)	0.22

B1. Ligand/Non-Fluorescent Binding Partner

CBD region (N-terminal region of the regulatory domain) of NHE1 (MBP-CBD)

B2. Molecular Class/Organism

Sodium/proton exchanger 1 (NHE1) + Homo sapiens (Human) – GC01M027109/Gene ID: 6548 Maltose-binding protein Escherichia coli – Gene ID: 948538

B3. Sequence/Formula

```
MKIEEGKLVI WINGDKGYNG LAEVGKKFEK DTGIKVTVEH PDKLEEKFPQ VAATGDGPDI IFWAHDRFGG YAQSGLLAEI TPDKAFQDKL YPFTWDAVRY NGKLIAYPIA VEALSLIYNK DLLPNPPKTW EEIPALDKEL KAKGKSALMF NLQEPYFTWP LIAADGGYAF KYENGKYDIK DVGVDNAGAK AGLTFLVDLI KNKHMNADTD YSIAEAAFNK GETAMTINGP WAWSNIDTSK VNYGVTVLPT FKGQPSKPFV GVLSAGINAA SPNKELAKEF LENYLLTDEG LEAVNKDKPL GAVALKSYEE ELVKDPRIAA TMENAQKGEI MPNIPQMSAF WYAVRTAVIN AASGRQTVDE ALKDAQTNSS SNNNNNNNN NLGENLYFQG GVDLLAVKKK QETKRSINEE IHTQFLDHLL TGIEDICGHY G
```

B4. Purification Strategy/Source

MBP-CBD was produced and purified from E. coli BL21 (DE3) cells using Ni-affinity chromatography and SEC.

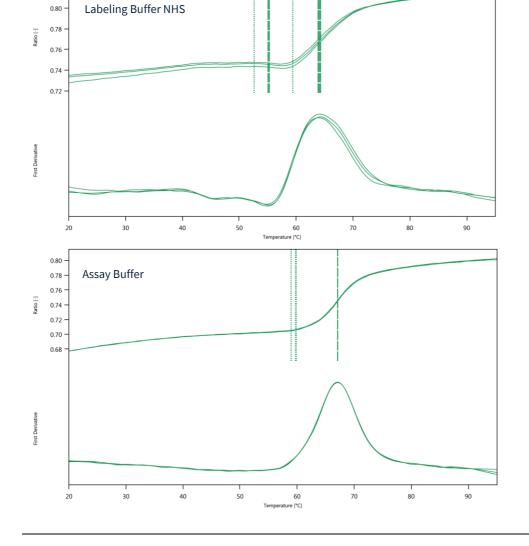
B5. Stock Concentration/Stock Buffer

10 mg/mL | $205\,\mu\text{M}$ 20 mM HEPES, pH 7.2, 150 mM NaCl, 1 mM TCEP, 1 M Sucrose

B6. Molecular Weight/Extinction Coefficient

48 kDa 69,330 M⁻¹cm⁻¹ (ε₂₈₀)

B7. Serial Dilution Preparation


- 1. Prepare a PCR-rack with 16 PCR tubes. Mix 1.95 μ L of the 205 μ M MBP-CBD stock solution with 18 μ L of dilution buffer in tube **1**. Then, transfer 10 μ L of dilution buffer into tubes **2** to **16**.
- 2. Prepare a 1:1 serial dilution by transferring 10 μ L from tube to tube. Mix carefully by pipetting up and down. Remember to discard 10 μ L from tube **16** to get an equal volume of 10 μ L for all samples.
- 3. Mix 2 μ L of labeled CHP3 (~20 μ M) with 2 mL of dilution buffer to obtain a ~20 nM CHP3 solution.
- 4. Add 10 μ L of 20 nM labeled CHP3 to each tube from **16** to **1** and mix by pipetting.
- 5. Incubate for 30 minutes at room temperature in the dark before loading capillaries.

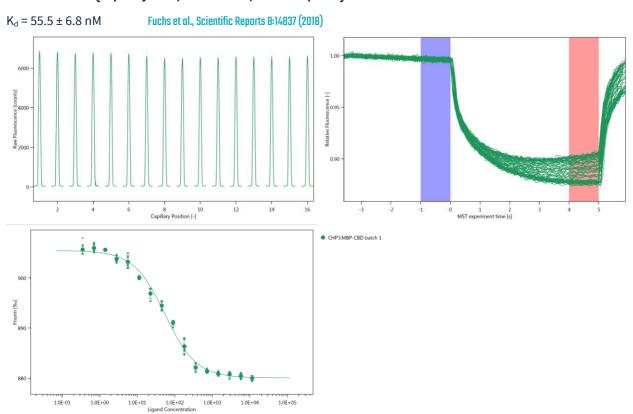
C. Applied Quality Checks

nanotempertech.com/prometheus

D1. MST System/Capillaries

Monolith NT.115^{Pico} Red (NanoTemper Technologies GmbH)
Premium Capillaries Monolith NT.115 (MO-K025, NanoTemper Technologies GmbH)

D2. MST Software


MO.Control v1.6 | MO.Affinity Analysis v2.3 (NanoTemper Technologies GmbH) nanotempertech.com/monolith-mo-control-software

D3. MST Experiment (Assay Buffer/Concentrations/Temperature/MST Power/Excitation Power)

20 mM HEPES, pH 7.2, 150 mM NaCl, 10 mM MgCl $_2$, 5 mM TCEP, 0.05% TWEEN® 20 10 nM CHP3 | 10 μ M – 0.3 nM BP-CBD | 22°C | medium MST power | 10% excitation power

D4. MST Results (Capillary Scan/Time Traces/Dose Response)

D5. Reference Results/Supporting Results

 $K_d = 3 \text{ nM}$ Isothermal Titration Calorimetry (ITC) Fuchs et al., Scientific Reports 8:14837 (2018)

E. Contributors

Simon Fuchs², Nina Schlinck³

² Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany

³ NanoTemper Technologies GmbH, München, Germany | nonotempertech.com