

Monolith Protocol MO-P-022

DNA Aptamer – AMP (C6 amino)

The DNA aptamer for adenosine is a highly conserved sequence that is a widely used model aptamer for biosensor development. It also binds ADP and ATP, and with slightly weaker affinity AMP. Aptamer with an NH₂-modification at the 5' end can be fluorescently labeled using an amino-reactive NHS-dye.

DNA – small molecule interaction | aptamer

A1. Target/Fluorescent Molecule

AMP aptamer

A2. Molecule Class/Organism

DNA aptamer

A3. Sequence/Formula

5' C6-NH $_{\rm 2}$ ACC TGG GGG AGT ATT GCG GAG GAA GGT 3'

A4. Purification Strategy/Source

metabion international AG

A5. Stock Concentration/Stock Buffer

0.87 mg/mL | 100 μM ddH₂O

A6. Molecular Weight/Extinction Coefficient

8664 Da 273,300 M⁻¹cm⁻¹ (ε₂₆₀)

A7. Dilution Buffer

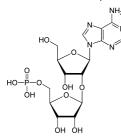
20 mM Tris-HCl, pH 7.8, 300 mM NaCl, 5 mM MgCl₂, 0.05% TWEEN® 20

A8. Labeling Strategy

Monolith Protein Labeling Kit RED – NHS 2nd Generation (MO-L011, NanoTemper Technologies GmbH) 1* Labeling Buffer NHS | 1* Dye RED-NHS 2nd Generation (10 µg) | 1* B-Column

A9. Labeling Procedure

- 1. Add 35 μ L of Labeling Buffer NHS to 10 μ L of 100 μ M AMP aptamer and mix well.
- 2. Add 5 μ L of DMSO to Dye RED-NHS 2nd Generation (10 μ g) to obtain a ~3 mM solution. Mix the dye thoroughly by vortexing and make sure that all dye is dissolved.
- 3. Add the 45 μ L of the AMP aptamer solution from step 1 to the dissolved dye from step 2 to obtain 50 μ L of a 20 μ M DNA aptamer, 300 μ M dye solution (15x protein concentration, 10% DMSO).
- 4. Incubate for 1 hour at room temperature in the dark.
- 5. In the meantime, remove the top cap of the B-Column and pour off the storage solution. Remove the bottom cap and place with adapter in a 15 mL tube.
- 6. Fill the column with dilution buffer and allow it to enter the packed resin bed completely by gravity flow. Discard the flow through collected. Repeat this step 3 more times.
- 7. Add 50 μL of the labeling reaction from step 3 to the center of the column and let sample enter the bed completely.
- 8. Add 500 μ L of dilution buffer after the sample has entered and discard the flow through.
- 9. Place column in a new collection tube, add 500 µL of dilution buffer and collect the eluate.
- 10. Keep the labeled aptamer (~2 μ M) on ice in the dark.


A10. Labeling Efficiency

Measurement of DNA concentration and degree of labeling (DOL) using a NanoDrop[™]: nanotempertech.com/dol-calculator

Absorbance A ₂₆₀	0.56	Protein concentration	2.0 μΜ
Absorbance A ₆₅₀	0.12	Degree-of-labeling (DOL)	0.31

B1. Ligand/Non-Fluorescent Binding Partner

Adenosine monophosphate (AMP)

B2. Molecule Class/Organism

Nucleotide monophosphate

B3. Sequence/Formula

 $C_{10}H_{14}N_5O_7P$

B4. Purification Strategy/Source

Sigma-Aldrich GmbH

B5. Stock Concentration/Stock Buffer

17.4 mg/mL | 50 mM 20 mM Tris-HCl, pH 7.8, 300 mM NaCl, 5 mM MgCl₂, 0.05% TWEEN[®] 20

B6. Molecular Weight/Extinction Coefficient

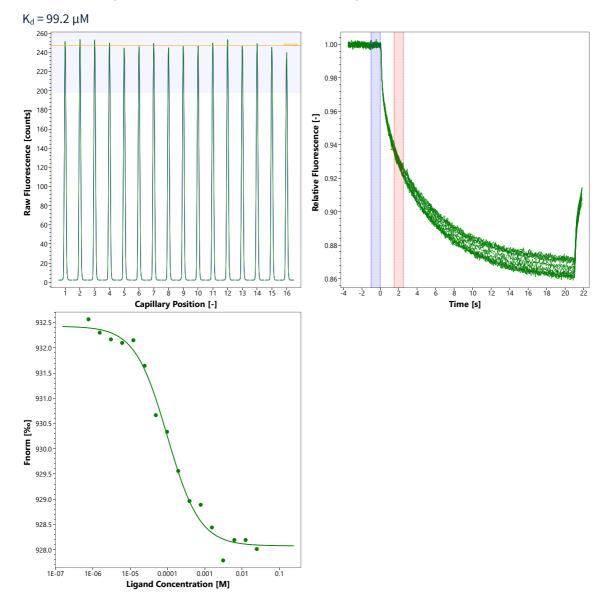
347.22 Da

B7. Serial Dilution Preparation

- 1. Prepare a PCR-rack with 16 PCR tubes. Transfer 20 μ L of the 50 mM AMP solution into tube **1**. Then, transfer 10 μ L of dilution buffer into tubes **2** to **16**.
- 2. Prepare a 1:1 serial dilution by transferring 10 μL from tube to tube. Mix carefully by pipetting up and down. Remember to discard 10 μL from tube **16** to get an equal volume of 10 μL for all samples.
- 3. Mix 20 μL of labeled AMP aptamer with 180 μL of dilution buffer to obtain 200 μL of ~200 nM AMP aptamer.
- 4. Add 10 μ L of ~200 nM labeled AMP aptamer to each tube from **16** to **1** and mix by pipetting.
- 5. Incubate for 5 minutes at room temperature in the dark before loading capillaries.

D1. MST System/Capillaries

Monolith NT.115 Red (NanoTemper Technologies GmbH) Capillaries Monolith NT.115 (MO-K022, NanoTemper Technologies GmbH)


D2. MST Software

MO.Control v1.6 (NanoTemper Technologies GmbH) nanotempertech.com/monolith-ma-control-software

D3. MST Experiment (Assay Buffer/Concentrations/Temperature/MST Power/Excitation Power)

20 mM Tris-HCl, pH 7.8, 300 mM NaCl, 5 mM MgCl₂, 0.05% TWEEN[®] 20 100 nM DNA aptamer | 25 mM AMP – 763 nM | 25°C | low MST power | 20% excitation power

D4. MST Results (Capillary Scan/Time Traces/Dose Response)

D5. Reference Results/Supporting Results

 K_d = 58 ± 2 μ M

Frontal chromatography analysis Deng et al., Anal Chem 73 (2001) 5415-5421

E. Contributors

Andreas Langer¹

¹ NanoTemper Technologies GmbH, München, Germany | nanotempertech.com