

Monolith Protocol MO-P-020

Sirtuin 5 – Compound

Sirtuin 5 (also known as Sirt5) is a NAD-dependent demalonylase, desuccinylase and deglutarylase that specifically removes malonyl, succinyl and glutaryl groups from lysine residues of target proteins. It activates carbamoyl phosphate synthetase (CPS1) and contributes to the regulation of blood ammonia levels during prolonged fasting, thereby increasing CPS1 activity in response to elevated NAD levels.

protein – small molecule interaction | deacylase | inhibitor | Hise-tag

A1. Target/Fluorescent Molecule

Sirtuin 5 (Sirt5)
uniprot.org/uniprot/Q9NXA8

A2. Molecule Class/Organism

NAD-dependent protein deacylase *Homo sapiens (Human)*

A3. Sequence/Formula

MRPLQIVPSR LISQLYCGLK PPASTRNQIC LKMARPSSSM ADFRKFFAKA KHIVIISGAG VSAESGVPTF RGAGGYWRKW QAQDLATPLA FAHNPSRVWE FYHYRREVMG SKEPNAGHRA IAECETRLGK QGRRVVVITQ NIDELHRKAG TKNLLEIHGS LFKTRCTSCG VVAENYKSPI CPALSGKGAP EPGTQDASIP VEKLPRCEEA GCGGLLRPHV VWFGENLDPA ILEEVDRELA HCDLCLVVGT SSVVYPAAMF APQVAARGVP VAEFNTETTP ATNRFRFHFQ GPCGTTLPEA LACHENETVS

A4. Purification Strategy/Source

N/A

A5. Stock Concentration/Stock Buffer

7.2 mg/mL | 213 μM

A6. Molecular Weight/Extinction Coefficient

33.8 kDa 30,940 M⁻¹cm⁻¹ (ε₂₈₀)

A7. Dilution Buffer

Phosphate-buffered saline (PBS, pH 7.4), 0.05% TWEEN® 20

A8. Labeling Strategy

Monolith His-Tag Labeling Kit RED-tris-NTA 2nd Generation¹ (MO-L018, NanoTemper Technologies GmbH) 1* 125 pmol RED-tris-NTA 2nd Generation Dye

A9. Labeling Procedure

- 1. Add 105 μ L of dilution buffer to 2 μ L of 213 μ M Sirt5 to obtain 107 μ L of a 4 μ M solution.
- 2. Suspend 125 pmol RED-tris-NTA Dye 2nd Generation in 25 μ L of dilution buffer to obtain a 5 μ M dye solution.
- 3. Mix 193 μ L of dilution buffer with 2 μ L dye (5 μ M) and 5 μ L Sirt5 (4 μ M) to obtain 200 μ L of a 100 nM Sirt5, 50 nM dye solution.
- 4. Incubate for 30 minutes at room temperature in the dark.

A10. Labeling	Efficiency
---------------	-------------------

N/A

B1. Ligand/Non-Fluorescent Binding Partner

Compound

B2. Molecule Class/Organism

Small molecule compound

B3. Sequence/Formula

N/A

B4. Purification Strategy/Source

N/A

B5. Stock Concentration/Stock Buffer

1 mM

DMSO

B6. Molecular Weight/Extinction Coefficient

N/A

¹ Both, NHS- and Maleimide labeling, are not recommended for sirtuins since lysines are important for the interaction with the substrate/ligand while cysteines are structurally important.

B7. Serial Dilution Preparation

- 1. Add 98 μ L of dilution buffer to 2 μ L of 1 mM compound to obtain 100 μ L of a 20 μ M.
- 2. Mix 4 μ L of DMSO with 196 μ L of dilution buffer to obtain 200 μ L of a 2% DMSO solution.
- 3. Prepare a PCR-rack with 16 PCR tubes. Transfer 20 μ L of the 20 μ M compound solution into tube **1**. Then, transfer 10 μ L of the 2% DMSO solution into tubes **2** to **16**.
- 4. Prepare a 1:1 serial dilution by transferring 10 μ L from tube to tube. Mix carefully by pipetting up and down. Remember to discard 10 μ L from tube **16** to get an equal volume of 10 μ L for all samples.
- 5. Add 10 μL of labeled Sirt5 (100 nM) to each tube from **16** to **1** and mix by pipetting.

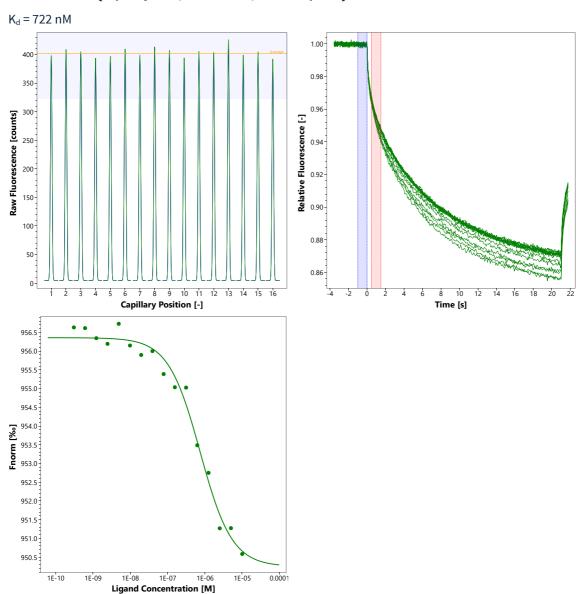
C. Applied Quality Checks

Validation of structural integrity and functionality of labeled Sirt5 using Tycho NT.6: nonotempertech.com/tycho

Unlabeled	abeled 5 μL of 4 μM Sirt5 + 5 μL of dilution buffer containing 2% DMSO	
With ligand	5 μL of 4 μM Sirt5 + 5 μL of 20 μM compound	T _i = 59.8°C
3 40 5	16 16 16 16 17 18 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	70 80 90 °C]
95	Unlabeled With ligand	
85		

D1. MST System/Capillaries

Monolith NT.115 Red (NanoTemper Technologies GmbH)
Capillaries Monolith NT.115 (MO-K022, NanoTemper Technologies GmbH)


D2. MST Software

MO.Control v1.6 (NanoTemper Technologies GmbH) nanotempertech.com/monolith-mo-control-software

D3. MST Experiment (Assay Buffer/Concentrations/Temperature/MST Power/Excitation Power)

Phosphate-buffered saline (PBS, pH 7.4), 0.05% TWEEN® 20, 1% DMSO 50 nM Sirt5 | 10 μ M – 305 pM compound | 25°C | medium MST power | 40% excitation power

D4. MST Results (Capillary Scan/Time Traces/Dose Response)

D5. Reference Results/Su	oportina Results
--------------------------	------------------

N/A

E. Contributors

Tanja Bartoschik²

 $^{\rm 2}$ NanoTemper Technologies GmbH, München, Germany | nanotempertech.com

5