

Monolith Protocol MO-P-008

Maltose Binding Protein – Maltose (label-free)

Maltose binding protein (MBP) is part of the periplasmic transport system of *Escherichia coli* and involved in the transport of maltose into the bacterium. It binds the disaccharide once it has crossed the outer membrane, and then assists its translocation across the inner membrane. Additionally, it is often used as a fusion tag for protein purification or solubilization.

protein – small molecule interaction | carbohydrate | conformational change | label-free

A1. Target/Fluorescent Molecule

Maltose/maltodextrin-binding periplasmic protein (MBP) uniprot.org/uniprot/PDAEX9

A2. Molecule Class/Organism

Periplasmic protein Escherichia coli

A3. Sequence/Formula

KIEEGKLVIW INGDKGYNGL AEVGKKFEKD TGIKVTVEHP DKLEEKFPQV AATGDGPDII FWAHDRFGGY AQSGLLAEIT PDKAFQDKLY PFTWDAVRYN GKLIAYPIAV EALSLIYNKD LLPNPPKTWE EIPALDKELK AKGKSALMFN LQEPYFTWPL IAADGGYAFK YENGKYDIKD VGVDNAGAKA GLTFLVDLIK NKHMNADTDY SIAEAAFNKG ETAMTINGPW AWSNIDTSKV NYGVTVLPTF KGQPSKPFVG VLSAGINAAS PNKELAKEFL ENYLLTDEGL EAVNKDKPLG AVALKSYEEE LAKDPRIAAT MENAQKGEIM PNIPQMSAFW YAVRTAVINA ASGRQTVDEA LKDAQTRITK

A4. Purification Strategy/Source

N/A

A5. Stock Concentration/Stock Buffer

 $0.5 \text{ mg/mL} \mid 12 \, \mu\text{M}$ Phosphate-buffered saline, $10\% \text{ glycerol}, 0.1\% \text{ Pluronic}^{\circ} \text{ F-127}$

A6. Molecular Weight/Extinction Coefficient

42 kDa 66,350 M⁻¹cm⁻¹ (ε₂₈₀)

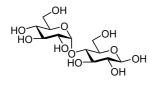
A7. Dilution Buffer

Phosphate-buffered saline (PBS, pH 7.4)

A8. Labeling Strategy

Trp and Tyr fluorescence

A9. Labeling Procedure


- 1. Mix 4 μ L of Pluronic® F-127 (5%) with 187 μ L of PBS.
- 2. Add 8.3 μ L of 12 μ M MBP to obtain 200 μ L of a 500 nM MBP solution in PBS with 0.1% Pluronic® F-127.

A10. Labeling Efficiency

N/A

B1. Ligand/Non-Fluorescent Binding Partner

D-(+)-Maltose monohydrate (maltose)

B2. Molecule Class/Organism

Carbohydrate

B3. Sequence/Formula

 $C_{12}H_{22}O_{11} \\$

B4. Purification Strategy/Source

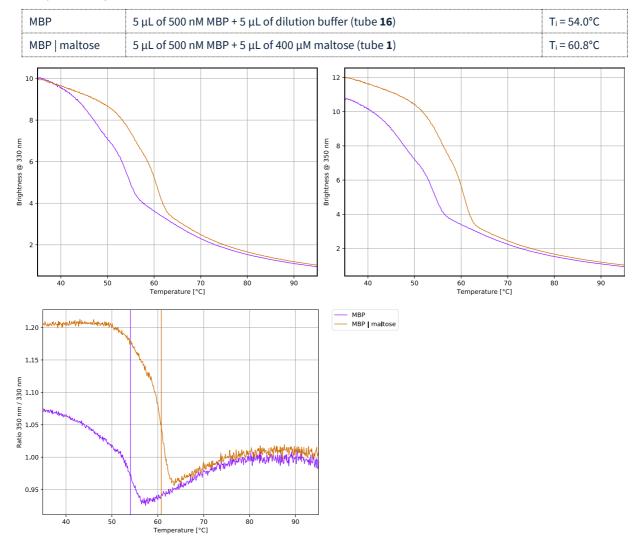
Sigma-Aldrich GmbH M9171

B5. Stock Concentration/Stock Buffer

Powdered

B6. Molecular Weight/Extinction Coefficient

360.31 Da


B7. Serial Dilution Preparation

- 1. Dissolve 10 mg of maltose monohydrate in 55.5 μL of ddH₂O to obtain a 500 mM maltose solution.
- 2. Mix 4 μ L of 500 mM maltose with 196 μ L of dilution buffer to obtain 200 μ L of a 10 mM maltose solution.
- 3. Mix 8 μ L of 10 mM maltose with 192 μ L of dilution buffer to obtain 200 μ L of a 400 μ M maltose solution.
- 4. Prepare a PCR-rack with 16 PCR tubes. Transfer 20 μ L of the 400 μ M maltose solution into tube **1**. Then, transfer 10 μ L of dilution buffer into tubes **2** to **16**.
- 5. Prepare a 1:1 serial dilution by transferring 10 μL from tube to tube. Mix carefully by pipetting up and down. Remember to discard 10 μL from tube **16** to get an equal volume of 10 μL for all samples.
- 6. Add 10 μ L of 500 nM MBP to each tube from **16** to **1** and mix by pipetting.
- 7. Incubate for 5 minutes at room temperature in the dark before loading capillaries.

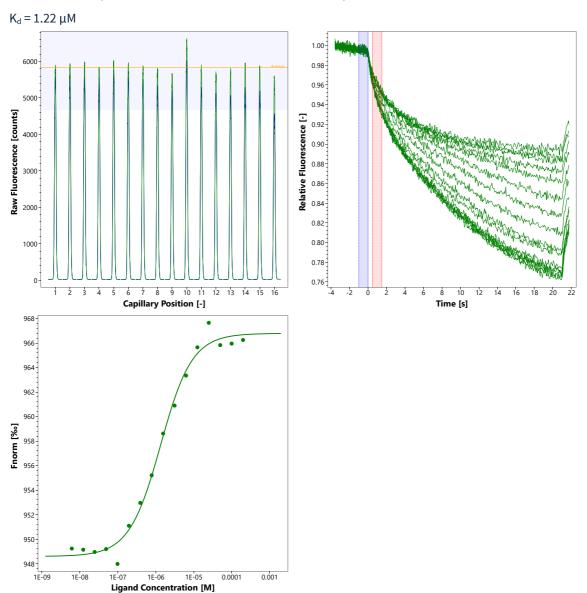
C. Applied Quality Checks

Validation of structural integrity and functionality of MBP using Tycho NT.6:

nanotempertech.com/tycho

D1. MST System/Capillaries

Monolith NT.LabelFree (NanoTemper Technologies GmbH)
Capillaries Monolith NT.LabelFree (MO-Z022, NanoTemper Technologies GmbH)


D2. MST Software

MO.Control v1.6 (NanoTemper Technologies GmbH) nanotempertech.com/monolith-mo-control-software

D3. MST Experiment (Assay Buffer/Concentrations/Temperature/MST Power/Excitation Power)

Phosphate-buffered saline (PBS, pH 7.4), 0.05% Pluronic® F-127 250 nM MBP | 200 μ M – 6.1 nM maltose | 25°C | medium MST power | 10% excitation power

D4. MST Results (Capillary Scan/Time Traces/Dose Response)

D5. Reference Results/Supporting Results

 $K_d = 1.2 \mu M$

Intrinsic fluorescence changes Telmer and Shilton, J Biol Chem 278 (2003) 34555-34567

E. Contributors

Andreas Langer¹

¹ NanoTemper Technologies GmbH, München, Germany | nanotempertech.com

5