

Monolith Protocol MO-P-006

Carbonic Anhydrase II – Furosemide

Bovine carbonic anhydrase II catalyzes the rapid interconversion of carbon dioxide and water to bicarbonate and protons. Its active site contains a zinc ion. Furosemide is a potent carbonic anhydrase inhibitor.

protein – small molecule interaction | inhibitor

A1. Target/Fluorescent Molecule

Carbonic Anhydrase Isozyme II from bovine erythrocytes (bCA-II) uniprot.org/uniprot/P00921

A2. Molecule Class/Organism

Carbonic anhydrase Bos taurus (Bovine)

A3. Sequence/Formula

MSHHWGYGKH NGPEHWHKDF PIANGERQSP VDIDTKAVVQ DPALKPLALV YGEATSRRMV NNGHSFNVEY DDSQDKAVLK DGPLTGTYRL VQFHFHWGSS DDQGSEHTVD RKKYAAELHL VHWNTKYGDF GTAAQQPDGL AVVGVFLKVG DANPALQKVL DALDSIKTKG KSTDFPNFDP GSLLPNVLDY WTYPGSLTTP PLLESVTWIV LKEPISVSSQ QMLKFRTLNF NAEGEPELLM LANWRPAQPL KNRQVRGFPK

A4. Purification Strategy/Source

Sigma-Aldrich GmbH C2522

A5. Stock Concentration/Stock Buffer

5 mg lyophilized powder

A6. Molecular Weight/Extinction Coefficient

29.1 kDa 50,420 M⁻¹cm⁻¹ (ε₂₈₀)

A7. Dilution Buffer

50 mM Tris-HCl, pH 7.8, 150 mM NaCl, 10 mM MgCl₂, 0.1% Pluronic® F-127

A8. Labeling Strategy

Monolith Protein Labeling Kit RED – NHS 2nd Generation (MO-L011, NanoTemper Technologies GmbH) 1* Labeling Buffer NHS | 1* Dye RED-NHS 2nd Generation (10 μg) | 1* B-Column

A9. Labeling Procedure

- 1. Prepare 10 mL of Labeling Buffer NHS containing 0.1% Pluronic® F-127 ('Labeling Buffer').
- 2. Dissolve ~200 μg of bCA-II in 100 μL of Labeling Buffer (approx. ~70 μM concentration).
- 3. Centrifuge the tube at 15,000 rpm at 4° C for 20 minutes to remove aggregates. Then, carefully transfer 95 μ L of the supernatant of the tube into a new tube and mix well by pipetting.
- 4. Determine the concentration spectroscopically using an extinction coefficient of 50,420 M⁻¹cm⁻¹ (ϵ_{280}). Afterwards, adjust the concentration to 40 μ M with Labeling Buffer.
- 5. Dissolve 0.34 g of ZnCl₂ in 10 mL of ddH₂O to obtain a 250 mM ZnCl₂ stock solution. Add 4 drops of HCl (1.2 M) to acidify the solution and completely dissolve all ZnCl₂.
- 6. Mix 4 μL of the 250 mM ZnCl₂ stock with 496 μL of ddH₂O to obtain a 500 μL of a 1 mM ZnCl₂ solution¹.
- 7. Mix 2 μ L of the 1 mM ZnCl₂ solution with 48 μ L of Labeling Buffer. Then, add 50 μ L of 40 μ M bCA-II to obtain 100 μ L of a 20 μ M bCA-II, 20 μ M ZnCl₂ solution.
- 8. Add 25 μ L of DMSO to 10 μ g Dye RED-NHS 2nd Generation (10 μ g) to obtain a ~600 μ M solution. Mix the dye thoroughly by vortexing and make sure that all dye is dissolved.
- 9. Mix 10 μ L of the 600 μ M dye solution with 90 μ L of Labeling Buffer to obtain 100 μ L of a 60 μ M dye solution (3x protein concentration).
- 10. Mix bCA-II and dye in a 1:1 volume ratio (200 μL final volume, 5% final DMSO concentration).
- 11. Incubate for 30 minutes at room temperature in the dark.
- 12. In the meantime, remove the top cap of the B-Column and pour off the storage solution. Remove the bottom cap and place with adapter in a 15 mL tube.
- 13. Fill the column with dilution buffer and allow it to enter the packed resin bed completely by gravity flow. Discard the flow through collected. Repeat this step 3 more times.
- 14. Add 200 μ L of the labeling reaction from step 5 to the center of the column and let sample enter the bed completely.
- 15. Add 450 μL of dilution buffer after the sample has entered and discard the flow through².
- 16. Place column in a new collection tube, add 450 μL of dilution buffer and collect the eluate.
- 17. Centrifuge the tube at 15,000 rpm at 4° C for 20 minutes to remove aggregates. Then, carefully transfer 400 μ L of the supernatant of the tube into a new tube and mix well by pipetting.
- 18. Keep the labeled bCA-II (~3.2 μM) on ice in the dark.

A10. Labeling Efficiency

Measurement of protein concentration and degree of labeling (DOL) using a NanoDrop™: nanotempertech.com/dol-colculator

Absorbance A ₂₈₀	0.182	Protein concentration	3.2 μM
Absorbance A ₆₅₀	0.558	Degree-of-labeling (DOL)	0.90

2

¹ Due to the low solubility of $ZnCl_2$ at non-acidic pH and higher ionic strength, as well as its tendency to form insoluble $Zn(OH)_2$ at pH > 7, the $ZnCl_2$ stock is prepared in ddH_2O (see also Krezel et al., Archives of Biochemistry and Biophysics 611 (2016) 3-19).

² This step will also remove any excess Zn(II) ions from the sample.

B1. Ligand/Non-Fluorescent Binding Partner

Furosemide

B2. Molecule Class/Organism

Carbonic anhydrase inhibitor

B3. Sequence/Formula

 $C_{12}H_{11}CIN_2O_5S$

B4. Purification Strategy/Source

Sigma-Aldrich GmbH F4381

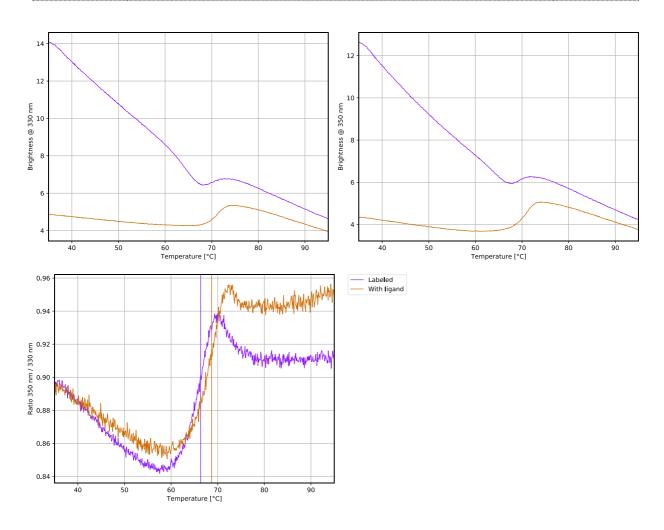
B5. Stock Concentration/Stock Buffer

33 mg/mL | 100 mM DMSO

B6. Molecular Weight/Extinction Coefficient

330.74 Da

B7. Serial Dilution Preparation


- 1. Dissolve 33 mg of furosemide in 1 mL of DMSO to obtain a 100 mM furosemide solution.
- 2. Add 2 μ L of 100 mM acetazolamide to 18 μ L of DMSO to obtain 20 μ L of a 10 mM solution.
- 3. Mix 5 μ L of the 1 mM acetazolamide solution with 495 μ L of dilution buffer to obtain 500 μ L of a 100 μ M furosemide solution.
- 4. Mix 10 μL of DMSO with 990 μL of dilution buffer to obtain 1 mL of a 1% DMSO solution.
- 5. Prepare a PCR-rack with 16 PCR tubes. Transfer 100 μ L of the 100 μ M furosemide solution into tube **1**. Then, transfer 50 μ L of the 1% DMSO solution into tubes **2** to **16**.
- 6. Prepare a 1:1 serial dilution by transferring 50 μ L from tube to tube. Mix carefully by pipetting up and down. Remember to discard 50 μ L from tube **16** to get an equal volume of 50 μ L for all samples.
- 7. Mix 6 μ L of labeled bCA-II (~3.2 μ M) with 954 μ L of dilution buffer to obtain 960 μ L of ~20 nM bCA-II.
- 8. Add 50 μ L of labeled bCA-II (~20 nM) to each tube from **16** to **1** and mix by pipetting.
- 9. Incubate tubes for 5 minutes in the dark before loading capillaries.

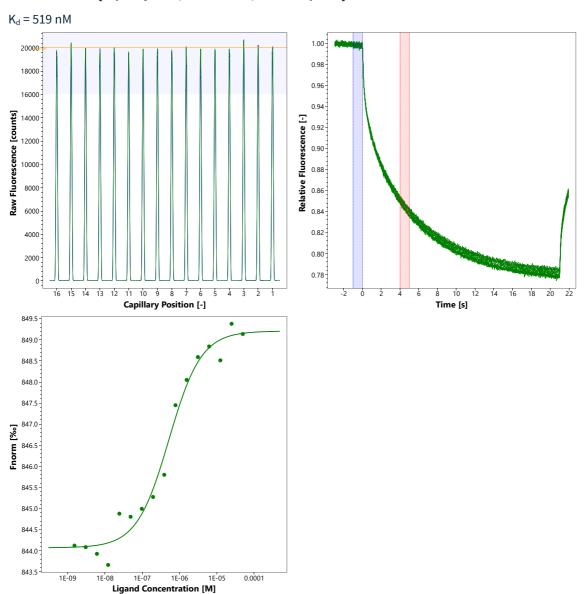
C. Applied Quality Checks

Validation of structural integrity and functionality of labeled bCA-II using Tycho NT.6: nonotempertech.com/tycho

Labeled	5 μL of column B eluate (~3.2 μM) + 5 μL of dilution buffer containing 1% DMSO	T _i = 66.3°C
With ligand	5 μL of column B eluate (~3.2 μM) + 5 μL of 100 μM furosemide	T _i = 68.7°C

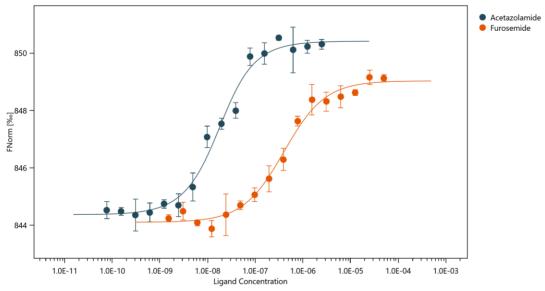
D1. MST System/Capillaries

Monolith Pico – RED (NanoTemper Technologies GmbH)
Premium Capillaries Monolith NT.115 (MO-K025, NanoTemper Technologies GmbH)


D2. MST Software

MO.Control v2.0.4 (NanoTemper Technologies GmbH) nanotempertech.com/monolith-mo-control-software

D3. MST Experiment (Assay Buffer/Concentrations/Temperature/MST Power/Excitation Power)


50 mM Tris-HCl, pH 7.8, 150 mM NaCl, 10 mM MgCl $_2$, 0.1% Pluronic® F-127, 0.5% DMSO 10 nM bCA-II | 50 μ M – 1.5 nM furosemide | 20°C | medium MST power | 10% excitation power

D4. MST Results (Capillary Scan/Time Traces/Dose Response)

D5. Reference Results/Supporting Results

K_d = 513 nM Surface Plasmon Resonance (SPR)

Myszka et al., Analytical Biochemistry 329 (2004) 316-323

K_d = 360 nM Isothermal Titration Calorimetry (ITC)

MicroCal PEAQ-ITC, Malvern Panalytical

E. Contributors

Andreas Langer³

³ NanoTemper Technologies GmbH, München, Germany | nanotempertech.com